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From bacteria to mammals, individual cells from an iso-

genic population are able to assume roles resulting in

phenotypic heterogeneity. The mechanisms used to make

these cell fate decisions range from highly deterministic

to essentially random. This wide range of behaviour

springs from the interplay of intracellular molecular

kinetics, the topologies of underlying gene regulator

networks, epigenetic control mechanisms and cell–

environment interactions. Cells utilise these factors to

implement differentiation strategies such as develop-

mental rigidity, which ensures the development of key

structures in multicellular organisms, and bet hedging,

the introduction of nongenetic variability to promote

population fitness. Because decision-making genes in

natural systems are integrated with myriad other

pathways, they can be difficult to study on their own.

Synthetic biology offers a means to study cell differ-

entiation in vivo in a manner separated from normal

cellular functions.

Introduction

The many processes that comprise gene regulation –
transcription, translation, protein and messenger ribonu-
cleic acid (mRNA) degradation, etc. – are inherently sto-
chastic (Kaern et al., 2005). This is because, at the
molecular level, all cellular decisions are the result of ran-
dom molecular interactions. These stochastic interactions
can give rise to heterogeneity within an otherwise homo-
genous population. In mice, which have roughly 1000 dif-
ferent olfactory receptors, stochastic differentiation
provides a simple mechanism for individual sensory neu-
rons to randomly express a single receptor (Mombaerts,

2004). Stochastic differentiation can also offer functional
benefits for a population. When in starvation conditions,
Bacillus subtilis exhibits a bet-hedging strategy in which
members choose randomly between states of sporulation,
diauxic growth and lysis (Suel et al., 2006; Veening et al.,
2008). Other stochastic decisions provide a simple method
of assigning labour division between associated cells, such
as in the random differentiation of photoreceptors to dif-
ferent colour-sensitive variants in Drosophila (Wernet
et al., 2006).

Despite this randomness, however, cell fate determina-
tion is often not a stochastic process. Rather, many fate
decisions proceed in a highly deterministic manner, often
in response to cues from the environment or neighbouring
cells. The transition of a fertilised oocyte into a blastocyst
demonstrates how precisely cell differentiation can be
guided through multiple stages of development (Clift
and Schuh, 2013). Similar deterministic developmental
processes have been documented in early growth and
body segmentation of Drosophila melanogaster due to
transcription factor gradients (Lee andOrr-Weaver, 2003).
Noise is a fact of life, arising from sources such as cell–

cell signalling, intracellular molecular dynamics, and
chromatin modification and packaging (Blake et al., 2003;
Elowitz, 2002). Organisms have adapted to utilise or
counteract this noisy expression in a context-dependent
manner. Understanding the mechanisms by which they
achieve this is of fundamental importance in under-
standing how cells make decisions. By understanding both
the deterministic and stochastic elements of cell decision
making, we can open up new venues in cell reprogramming
and therapeutics with which scientists and engineers are
only beginning to experiment.

Cell Fate Determination

Cellular adaptability and role assignment has allowed life
to thrive, in both single cellular and multicellular states.
Central to this adaptability is the ability of individual
cells to differentiate into specialised variants that comple-
ment each other. For example, some cells in a B. subtilis
population may transition to a state of competency, in
which they uptake foreign deoxyribonucleic acid (DNA),
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whereas others retain a tepid relationship with non-native
DNA (Maamar et al., 2007), increasing diversity to
improve overall population fitness. Mating yeast adopt a
mating type on cell division, determining viable mating
partners and promoting evolutionary diversification
(Peisajovich et al., 2010). In multicellular organisms, stem
cells differentiate into specific lineages unique to the mul-
titude of tissues and organs found throughout the body
(Enver et al., 2009). Whether as a means to promote
population fitness or as away to form the various parts of a
larger organism, cells adopt roles, resulting in phenotypic
changes, which cannot be easily reversed (Balazsi et al.,
2011).
Through the process of differentiation, cells arrive at

their fate: a quasi-equilibrium state of gene expression
characterised by functional and phenotypic steady states.
Cell fate is a complex phenomenon involving the balance
of many intracellular interactions (Macarthur et al.,
2009). One of the primary defining qualities of a cell fate is
its invariance to noise, to the extent that many cell fate
decisions are considered irreversible (Vierbuchen et al.,
2010). Although the advent of induced pluripotent stem
cells has challenged the absolute irreversibility of differ-
entiated cell fates, cell fate decisions can still be considered
invariable to internal noise (Yamanaka, 2009). Without
an external force, a cell that has already differentiated to
a given fate will not spontaneously dedifferentiate to a
previous state.
There are two prevailing analogies for cell fate deter-

mination. The first is that of the epigenetic landscape, in
which a marble rolls down a hill containing a number of
separate valleys (Waddington, 1957). As themarble travels
further down the hill, the valleys bifurcate into more and
more specific channels. The valleys represent potential cell
fates, their walls representing the forces at work that
maintain a chosen fate. Cells choose fates based on the
layout of this landscape and through random variations
that develop along the journey towards a final fate. The
second analogy for fate selection is that of a dynamic
attractor in high-dimensional gene expression space
(Kauffman, 1969). Somewhat less intuitive than Wad-
dington’s landscape, this visualisation emphasises the
complexity of gene interactions. The state of a genetic
system is represented as its location within a multi-
dimensional gene expression space: typically with more
than 3 dimensions; hence, nonsimplified visualisation is
difficult or impossible. Certain regions in the space are
more stable than others, acting as attractors towardswhich
the system will ultimately trend. These stable attractors
represent distinct phenotypes (Huang et al., 2005). Both
analogies have their merits. The epigenetic landscape is
easy to understand and is representative of how cells often
transition through several distinct phenotypes before ulti-
mately arriving at a terminal fate. The multidimensional
genetic space representation more fully captures the com-
plexity of intracellular dynamics and gets beyond pheno-
typic descriptions, although its increased complexity
makes it more difficult to visualise.

Deterministic Cell Fate Decisions

We know through the observation of natural systems that
cells are capable of deterministic differentiation. Devel-
opmental biology is particularly rife with examples. Per-
haps one of the starkest examples is the embryonic
development of Caenorhabditis elegans (Sulston et al.,
1983). The development ofC. elegans has been thoroughly
traced from zygote to larva, from a single cell to exactly 671
cells, with such a rigid developmental pattern as for Sulston
et al. to declare the process ‘essentially invariant’. The
process is not only invariant in terms of cell count at var-
ious stages but also shows remarkable time resolution. For
example, under similar experimental conditions, one can
expect to see exactly 28 cells and the beginning of gas-
trulation 100min after first cleavage. A large number of
these cells, 111 or 113 depending on the sex of the nema-
tode, are programmed to ultimately die in the development
process, before the nematode’s hatching at 800min after
first cleavage. See also: Caenorhabditis elegans Embry-
ogenesis: Genetic Analysis of Cell Specification
On an intuitive level, deterministic embryonic develop-

ment makes sense. For a single fertilised egg to reliably
divide into an entire multicellular organism, early pro-
genitor cells for the various tissues would need to be placed
exactly, both spatially and temporally. It is no surprise then
that this sort of strictly deterministic cell fate assignment is
commonly observed throughout the biological world.
Reduction in variability during development, a process
often referred to as canalisation or phenotypic stability,
has been observed in blastocyst formation in D. melano-
gaster (Manu et al., 2009), the zebra fish dermal skeleton
development (DeLaurier et al., 2014) and early human
embryogenesis (Clift and Schuh, 2013). This lack of var-
iation, like all cellular processes, is due to gene expression
regulation. See also: Autonomous Cell Fate Specification:
Overview
Gene expression and its regulation are inherently sto-

chastic processes (Kaern et al., 2005). Despite this, cells
have evolved mechanisms to reduce or ignore this noise in
order to act in a deterministic fashion. Gene regulatory
networks (GRNs) are the key to this behaviour (Davidson
and Levine, 2008). GRNs are, both topologically and
functionally, composed of small network motifs (Alon,
2007), and several commonmotifs function to regulate the
noise of their output signal. Negative feedback loops have
been shown to produce tightly controlled gene expression
compared with similar networks without feedback (Becs-
kel and Serrano, 2000). Coherent feedforward loops, in
which an input signal mediates an output through two
pathways, one direct and one indirect, have similar noise-
reducing qualities (Ghosh et al., 2005). Examples of these
motifs are shown in Figure 1. Although noise is never
completely eliminated, due to the nature of biochemical
reactions, its effect can be reduced enough for the GRN to
behave deterministically.
Mathematically, deterministic cell fate assignment can

be described by a system of ordinary differential equations
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(ODEs) without loss of descriptive power regarding cell-
switching dynamics. ODE models can offer insights into
how changing concentrations of important molecules
affect changes within a biological system. Populations that
exhibit hysteresis are those that can occupy one of two or
more steady expression states. Which state they choose is
dependent on their starting conditions and the dynamics of
other interrelated protein populations. Hysteresis, illu-
strated in Figure 2, is the foundation of cell decisionmaking,
because it allows a single cell or population to have more
than one mode in which it operates. Because all cells of an
organism are almost genetically identical – they contain
exactly the same DNA – the ability to maintain multiple
different stable gene expression states is necessary (Gard-
ner et al., 2000).
A network typically only exhibits hysteresis within a

range of some input or combination of inputs. Inputs are
commonly proteins made by other components in the
GRN, signalling ligands from other cells, or small mole-
cules dictated by environmental conditions. Shifting these
conditions can alter the points at which a GRNwill switch
between possible steady states, and it can alter the shape of
the bifurcation curve that describeswhen andhow robustly
a system can maintain a given state (Chen and Arkin,
2012). Because state switching is such a dynamic process,
affected by so many different elements, maintaining a dif-
ferentiated state is as important as the initial differentiation
process. In addition to GRN topologies that naturally
reduce the noise of their output, cells have a number of
other tools at their disposal to reduce the possibility of
undesirable state transitions.
Because cells have no control over the levels of extrinsic

noise, many receptors on the plasma membrane have
developed to ignore short fluctuations in signalling mole-
cules, responding instead to more prolonged signals
(Ladbury and Arold, 2012). This is seen in the multi-
merisation of receptors, which reduce the chance of acti-
vation of a signalling pathway by a single errant ligand
(Ghim and Almaas, 2008). Other receptors, including
many receptor tyrosine kinases, include other thresholding
measures, such as endogenous phosphatase activity, which
deactivates the receptor in the absence of a strong external
signal (Östman and Böhmer, 2001). These mechanisms
work in parallel to reduce the amount of noise from an
external signal that is transmitted into the cell. See also:
Transmembrane Signalling
A final powerful tool that eukaryotic cells have at their

disposal is the ability tomodulate – to the point of absolute

repression – gene activity through histone binding and
chromatin organisation (Meshorer and Misteli, 2006).
Histones can impede mRNA transcription on their own
through steric hindrance, andwhen coiled densely together
into the various chromatin structures they can make genes
completely inaccessible to transcription machinery,
essentially turning them off. This type of epigenetic control
of gene activity is clearly evident on a tissue level, and it
is responsible for much of the striking array of genetic
expression levels observed throughout multicellular
organisms (Akashi et al., 2003). See also: Tissue-specific
Locus Control: Structure and Function

(a) (b)

Figure 1 Several genetic motifs have been shown to reduce expression

noise. Shown here are two of the most common noise buffering motifs. (a)

Negative feedback loop (NFBL). (b) Coherent type-1 feedforward loop

(C1FFL).
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Figure 2 Genetic decision making is often characterised by hysteresis,

where gene expression can be either high or low depending on the

concentration of some input: usually another protein population or a small

molecule species in the environment. (a) Varying the concentration of

Input 1 reveals a region in which gene expression has two possible steady

states. In a noise-free system, this choice depends on the system’s initial

conditions. (b) If the bistable region is dependent on 2 inputs, their effects

on the bistable region’s shape can be plotted as a stability map. The dotted

line indicates the concentration of Input 2 that would produce plot (a).
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Stochastic Cell Fate Decisions

Given that cells often employ genetic topologies to reduce
the noise in their outputs, it is perhaps unsurprising that
other networks and developmental pathways have evolved
to utilise the inherently noisy nature of biological networks
(Balazsi et al., 2011). Many organisms use stochastic pro-
cesses to make long-reaching decisions. Many bacterial
species exhibit the phenomenon of persistence, in which a
small subset of a population survives antibiotic treatment
by entering a dormant state (Allison et al., 2011). It is also
suggested that gene expression noise may increase cell–cell
variability and help the cells hedge the environmental risk
to increase their survival possibility (Bennett et al., 2008).
Stochastic fluctuations in the mouse blastocyst are rein-
forced, ultimately leading to distinct cell lineages (Ohnishi
et al., 2014), and the differentiation of haematopoietic stem
cells into the myeloid or lymphoid pathways is driven by
stochastic gene expression (Miyamoto et al., 2002).

There are several primary contributors to stochastic
gene expression. In a broad sense, gene expression is gov-
erned by two categories of noise: intrinsic and extrinsic
(Elowitz, 2002). Extrinsic noise is the result of fluctuations
in the cellular environment over which a cell has no direct
control, although the intracellular response to anoisy input
can still be mediated, as discussed in the previous section.
Alternatively, intrinsic noise is the result of biochemical
interactions within an individual cell. Key interactions
include those of transcription factors (TFs), which bind to
the promoter region upstream of a gene to modulate its
expression, and the dynamics of mRNA transcripts, which
contain the message for a cell to create new proteins.
See also: Transcription Activation in Eukaryotic Cells
On an intrinsic level, it is important to understand cells

and the various structures inside them as 3-dimensionally
distributed spaces.Themajority of gene regulationwithin a
single cell is carried out byTFs (Rosenfeld et al., 2005). The
active state – monomer, dimer, tetramer, etc. – of a given
TF can strongly influence its noise kinetics by making
DNA interactions more or less specific. Additionally, TFs,
beingproteins, aremade in the cell’s cytoplasmandmust be
imported into the nucleus for eukaryotic cells in order to
interact with DNA. Translocation of transcription factors
across the nuclear membrane can also a source of noise
(Cai et al., 2008). Many genes are present in only a single
copy. The probability of any single transcription factor
finding and interacting with that gene’s promoter is very
low.Given thatmany transcription factors are present only
in low concentration, a system with noisy expression is
created. See also: Gene Duplication: Evolution; Tran-
scriptional Gene Regulation in Eukaryotes
Once the necessary transcription factors have found the

genes that they modulate, binding dynamics and the
recruitment of the RNA polymerase introduce another
source of noise (Singh et al., 2012). Transcriptional activity
– whether the RNA polymerase complex is assembled,
attempting to start making an RNA transcript, paused in
the middle of elongation, or terminating transcription – is

highly variable (Hammer et al., 1999). This leads directly
to fluctuations in mRNA concentrations, which are
further randomised by fluctuating decay rates. See also:
Transcription Activation in Eukaryotic Cells
Finally, there is a growing body of work that there may

be epigenetic sources of noise within cells. Variation in
histone methylation across several cancer types is one
distinguishing factor of cancerous cells versus normal tis-
sue and most likely plays a role in the vast heterogeneity
seen in cancer populations (Hansen et al., 2011). Similar
epigenetic modifications, although within much more
limited areas of the genome, have also been implicated in
epithelial to mesenchymal transition: an important cell
reprogramming process in development and wound repair
(McDonald et al., 2011). Although not yet widely accepted
as a definite cause of random cell fate assignment, this field
is bound to grow and offer new insights in cellular decision
making in the future. See also: Chromatin Remodelling
and Histone Modification in Transcription Regulation;
Nucleosomes: Structure and Function
Despite the stochasticity of gene expression, pathways

dictating stochastic differentiation are still tightly regu-
lated. Expression is not completely random; instead, cells
are allowed to randomly choose between a number of fates
in a weighted manner. These systems, when viewed on a
population level, typically exhibit consistent distributions.
For example, although the colour-sensitive photoreceptors
in the eye of Drosophila are randomly assigned to one of
two variants, under natural conditions there is consistently
a 30%/70% distribution between them (Wernet et al.,
2006). This weighted distribution is best represented by a
cell’s potential landscape, a concept that has emerged as an
iteration of Waddington’s epigenetic landscape (Wang
et al., 2010). At its most basic level, the potential landscape
is represented as a 2-dimensional curve, with local minima
representing stable expression states, similar to that shown
in Figure 3. In thismodel, a gene’s expression is akin to a ball
rolling along this landscape. It is driven both by a deter-
ministic force, like gravity, which draws it towards the
nearest local minimum, and stochastic fluctuations, which
bat it randomly from side to side. The peaks between the
landscape’s valleys buffer against random switching
between valleys, but they do not prevent it entirely. In the
case of stochastic fate assignment, the heights of the peaks
between valleys determine the probability of choosing one
fate over another.
This model can be scaled up to 3 or more dimensions,

each dimension representing the activity level of another
gene within the GRN. Because all fate decisions are typi-
cally influenced by changes in multiple genes’ expressions,
this model has become more and more popular. Essen-
tially, a high-dimensional version of this model is the
dynamic attractor model mentioned previously (Kauff-
man, 1969).
Once a cell has differentiated stochastically, main-

tenance of the chosen fate proceeds through the
same mechanisms as if it had differentiated deterministi-
cally. Noise reduction strategies – GRN motifs, protein
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multimerisation and epigenetic control – remain as
important in a system that chooses a fate stochastically as
in one that evolves deterministically.

Synthetic Biology Approaches

Cell fate determination of any kind is a complex process
that poses unique obstacles for researchers. The inter-
relatedness of genetic systems is one of the most con-
founding barriers, as changes in one gene’s expression can
induce systemic changes. Altering cell fates in existing
systems tends to have high incidence of cell death (Yama-
naka, 2009). Using a synthetic biology approach, genetic
expression patterns of decision-making networks can be
studied in vivo while reducing the studied network’s inter-
action with other cellular functions. The rational design
and integration of non-native genetic machinery into cells

offers the potential to observe the behaviour of small
genetic motifs (Austin et al., 2006), quantify the noise
dynamics of individual network components (Blake et al.,
2006) and craft GRNs that determine cell fate (Chen and
Arkin, 2012), utilising components that act orthogonally to
most other cellular machinery.
Using fluorescent reporters, cell fate determination can

be simulated without interrupting important cellular pro-
cesses. Behaviours of numerous similar genetic compo-
nents can be analysed both in individual expression and in
how their expression influences the overall activity of a
larger network (Ellis et al., 2009). Starting from individual
components, behaviours of small motifs can be thoroughly
characterised and used to create more and more complex
topologies (Guido et al., 2006). This ‘bottom-up’ approach
to genetic network construction, paired with synthetic
biology’s emphasis on mathematical modelling, offers
unparalleled insight into gene regulation and cell fate
determination from multiple perspectives.
The power of this approach is demonstrated in the

construction of a stochastic and irreversible cell fate
determining GRN in Saccharomyces cerevisiae (Wu et al.,
2013). The topology created is that of mutual inhibition
between two genes. From a neutral state, the system will
settle into a state of either green or red fluorescence, but not
both. The probability of differentiating to one state or the
other can be modulated by altering the cells’ environment
with inducers specific to each regulatory gene, and the
accompanying mathematical model accurately captures
the shifting potential landscape caused by these environ-
mental changes. In addition to demonstrating and math-
ematically explaining protein dynamics, this construct
illustrates ways in which synthetic networks might be
integrated into natural systems in the future. Through
exploiting the highly regulated Gal1 promoter, the
researchers were able to obtain initial conditions that
would have been difficult to produce with a construct that
did not interact with the native genetic architecture. This is
a clear illustration of how synthetic biology could be used
to interface novel circuits with existing GRNs to robustly
produce a desired behaviour.
Our understanding of the complex processes involved in

cell fate decisions is constantly expanding. With its combi-
nation of molecular genetics and mathematical modelling,
synthetic biology has begun to plumb the depths of this
topic, offering insight into both how decisions aremade and
how cell fates can be directed artificially. As more knowl-
edge is gained on the function of individual components
and network motifs, the creation of larger, more intricately
controlled systems will become possible. Understanding
these regulatory networks will open up new therapeutic
venues, with applications throughout medical science.
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