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Engineering artificial gene networks from modular components is a major goal of synthetic biology. However, the construction

of gene networks with predictable functions remains hampered by a lack of suitable components and the fact that assembled

networks often require extensive, iterative retrofitting to work as intended. Here we present an approach that couples libraries

of diversified components (synthesized with randomized nonessential sequence) with in silico modeling to guide predictable

gene network construction without the need for post hoc tweaking. We demonstrate our approach in Saccharomyces cerevisiae

by synthesizing regulatory promoter libraries and using them to construct feed-forward loop networks with different predicted

input-output characteristics. We then expand our method to produce a synthetic gene network acting as a predictable timer,

modifiable by component choice. We use this network to control the timing of yeast sedimentation, illustrating how the

plug-and-play nature of our design can be readily applied to biotechnology.

Synthetic biology promises to transform biotechnology by applying
engineering principles to biological systems1. In less than a decade,
this field has already yielded technological applications, providing new
avenues for drug manufacture2,3, biofabrication4 and therapeutics5,6,
while also showing promise in alternative energy7. A major focus
of the field is the synthesis of gene networks with predictable
behavior8–10, either to endow cells with novel functions11–15 or to
study analogous natural systems8,16–19. Despite a booming community
and notable successes, the basic task of assembling a predictable gene
network from biomolecular parts remains a considerable challenge
and often takes many months before a desired network is realized20. If
synthetic biology is to advance, it is essential to identify techniques
that increase the predictability of gene network engineering and
decrease the amount of hands-on molecular biology required to get
a functional network up and running.

Current approaches to gene network construction typically use a
small set of components taken from different natural systems,
which are then assembled and tested in vivo, often without
guidance from a priori mathematical modeling13,21. Networks
rarely behave as intended the first time, usually because chosen
parts have the correct function but lack the specific quantitative
properties required. Even for those few synthetic biology studies
that do involve computational assistance22–25, in silico results have
been mainly used for data interpretation, not for guiding design
and assembly. Instead, in most projects, an initial failed network is
usually resolved over months of iterative retrofitting20, often by
fine-tuning imperfect parts by mutation, identifying alternative
parts or adding extra features to counterbalance the problems.

Directed evolution has been shown to provide a short-cut through
this phase21 but is complicated by the additional work needed to
couple networks to selective pressures.

This time-consuming post hoc tweaking phase stems in part from
having to work with a limited set of imperfect components. Although
this lack of reliable parts is being addressed by community efforts26, it
remains an acute problem because most of the available components
are inadequately characterized. For example, many promoters are
simply characterized as being ‘weak’ or ‘strong’. What is needed to
resolve this problem and fast-track synthetic biology is an approach
that creates libraries of components ahead of any assembly. Then, by
starting with a finer granular range of choices for each component,
modeling can be used to quickly pick out the correct part needed to
generate the intended network function. This approach offers the
added attraction of allowing substantially different network outcomes
to be chosen in advance, simply by selecting functionally equivalent
components with slightly different properties. This exploits a feature
common to many types of finely balanced networks, where small
changes to one component can have a large impact on the behavior of
the entire system.

Using regulated promoters as our example, we describe here how a
simple synthesis technique can be used to rapidly create and char-
acterize component libraries for synthetic biology. Working in
S. cerevisiae, we demonstrate how such libraries can be teamed with
predictive modeling to rationally guide the construction of gene
networks that have diverse outputs. We also illustrate a plug-and-
play application for one of our network designs by using it to control
the timing of yeast sedimentation.
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RESULTS

Parallel synthesis and characterization of promoter libraries

To demonstrate our library-modeling approach, we focused on
regulated promoters, as they typically control gene network logic
and modulate responses to stimuli. Promoter libraries have been
created using DNA-shuffling/combinatorial approaches27–29 and
mutation-selection techniques30–33, but these approaches do not
allow for rational de novo design. We modified an efficient synthesis-
with-degenerate-sequence method32 to yield libraries of regulatory
promoters that have a range of inputs and outputs. In this
technique, promoters are constructed with runs of unspecified (‘N’)
sequence-separating key motifs32; the fixed motif sequences ensure
promoter function, and the random bases surrounding them
modulate their efficiency, presumably by subtly altering local
DNA conformation34.

Our first library was designed to yield yeast promoters repressed by
TetR (Tn10.B tetracycline repressor35) and inducible with the TetR-
inhibitor anhydrotetracycline (ATc). We used a Klenow-based synth-
esis method, using inexpensive oligonucleotides31,34, to build promo-
ters containing the TATA box and start site from the commonly used
GAL1 promoter36. To introduce controlled regulation, we placed two
tandem TetR operators (Tn10 operator tetO2) into the promoter at
positions previously shown to provide tight repression29.

A schematic of our library synthesis technique is shown in Figure 1
and detailed in the Methods. To characterize the strength of every
promoter, each one was cloned upstream of yeast enhanced green
fluorescent protein (yEGFP)37 and downstream of a GAL1 upstream
activation signal (UAS) in a vector that also contained the strong
constitutive TEF1 promoter38 directing TetR expression. Constitutive
expression of TetR ensures low basal levels of yEGFP, which can be
relieved by adding ATc to the medium. The GAL1 UAS allows us to
avoid the effects of nucleosomes as it directs their removal from the
promoter in the presence of galactose39. We arbitrarily chose to

build a library of 20 promoters (T1–T20), covering a wide range
of expression and inhibition levels. By measuring yEGFP levels
with flow cytometry, we quantitatively determined every promoter’s
minimum (TetR repressed) output (Smin) and maximum (TetR
unrepressed) output (Smax) (Table 1). The approach was designed
to yield interchangeable promoters that are identical except for
Smin, Smax and intermotif sequences. This was confirmed by
comparison to TX, a control promoter retaining the GAL1 wild-
type sequence between defined motifs, as well as by DNA sequencing
(Supplementary Methods) and dose-response curves (Supplemen-
tary Methods).
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Figure 1 Regulatory promoter library synthesis, screening and

characterization. Schematic design for TetR-regulated promoter synthesis.

(a) Promoters are constructed by Klenow polymerase extension from two

overlapping 110-mer oligonucleotides synthesized with unspecified

nucleotides (N) between defined motifs. (b) Promoters are ligated

between UASGAL1 and the yEGFP coding sequence in the characterization

vector, which also expresses TetR from the TEF1 promoter (PTEF1).

(c) Transformation of yeast yields thousands of colonies with the genome-
integrated vector. (d) Individual colonies are screened in 96-well format by

measuring fluorescence in induction conditions after 22 h growth (media

supplemented with 2% galactose + 250 ng/ml ATc). (e) A library of 20

regulated promoters covering a range of expression levels is selected from

screening data and quantitatively characterized using flow cytometry

measurement of yEGFP expression after 22 h growth in medium

supplemented with 2% galactose (GAL) and with 250 ng/ml ATc (GAL +

ATc). TX, control promoter; T1–T20, library promoters; –, null promoter.

Table 1 Maximum and minimum output values of members of the

promoter libraries

TetR-regulated promoters (PLibT) LacI-regulated promoters (PLibL)

Promoter Smax s.e.m. Smin s.e.m. Promoter Smax s.e.m. Smin s.e.m.

TX 918.00 33.83 7.46 0.46 LX 717.38 21.06 13.06 0.77

T1 694.23 19.89 32.79 2.58 L1 399.90 25.02 11.11 0.60

T2 595.79 17.07 8.38 0.50 L2 372.59 16.87 9.71 0.11

T3 506.31 27.48 20.22 2.16 L3 292.11 11.60 83.05 1.09

T4 421.78 5.83 3.26 0.16 L4 282.01 13.61 50.55 1.92

T5 408.04 22.91 9.87 0.41 L5 246.73 6.42 151.75 2.77

T6 418.60 16.63 6.46 1.68 L6 228.45 15.37 23.79 0.31

T7 319.66 13.41 3.04 0.15 L7 139.99 8.43 5.40 0.35

T8 277.75 12.94 30.88 1.75 L8 141.86 6.23 7.67 0.35

T9 244.21 11.79 11.34 0.62 L9 134.04 9.73 23.54 1.55

T10 216.99 7.34 3.27 0.18 L10 129.13 8.04 4.96 0.30

T11 203.14 6.90 3.41 0.18 L11 108.27 4.18 5.74 0.45

T12 201.76 3.75 7.08 0.53 L12 107.35 4.73 5.07 0.36

T13 154.46 12.15 4.01 0.23 L13 103.58 9.54 4.37 0.29

T14 151.03 10.36 6.42 0.19 L14 82.32 1.50 4.15 0.23

T15 118.93 5.85 4.62 0.19 L15 70.91 4.42 20.83 0.96

T16 108.22 3.40 3.71 0.13 L16 72.03 3.05 4.28 0.23

T17 81.70 3.39 5.91 0.27 L17 56.97 1.77 5.15 0.36

T18 51.75 3.27 3.26 0.25 L18 47.16 1.33 3.91 0.28

T19 48.29 1.10 5.13 0.89 L19 44.10 2.25 4.25 0.20

T20 30.69 0.40 6.95 0.45 L20 37.08 2.12 9.41 0.69

TEF1 287.38 14.38

Cultures grown in 2% galactose-supplemented medium for 22 h were measured for median
yEGFP expression by flow cytometry; values are the means of three biological repeats with
s.e.m. given. For characterization purposes, the repressor of interest (TetR or LacI) was
constitutively expressed from the TEF1 promoter, which was also measured in this study and
found to remain constant in all growth conditions used. Maximum output (Smax) is measured
with saturating concentrations of repressor inhibitor (250 ng/ml ATc for TetR, 10 mM IPTG for
LacI); minimum output (Smin) is measured without inhibitors.
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Feed-forward loop networks

To demonstrate how our approach can be applied in a gene network,
we used the TetR-regulated promoter library with in silico modeling to
investigate the incoherent type II negative feed-forward loop network.
This is a genetic motif found in S. cerevisiae and mammalian cells that
consists of an output gene regulated by two repressor genes, one of
which is also inhibited by the other40.

For our network, we used TetR and a eukaryotic-optimized version
of the Escherichia coli Lac inhibitor41 (lacI) as repressors (Fig. 2a).
Each protein repressed yEGFP expression by regulating a yeast hybrid
GAL1-based promoter (POR-LT) containing both the K-12 E. coli O1

Lac operator (lacO) and a tetO2 site. Thus, GAL1-driven yEGFP is
downregulated in the presence of either TetR or LacI (that is, the
synthetic promoter acts as an ‘OR’ gate). TetR expression was con-
stitutive from the TEF1 promoter, whereas LacI expression was driven
by a promoter (PLibT) selected from our library of TetR-regulated
promoters. By varying the concentrations of two inputs—ATc and the
LacI inhibitor isopropyl b-D-1-thiogalactopyranoside (IPTG)—the
repressive effects of TetR and LacI could be tuned, modulating
yEGFP expression output.

Before any network assembly, we used component properties from
our experimental characterization steps to build a mathematical
model to predict how network output would change when input

levels (ATc/IPTG) and promoter properties
were varied. The model served as a guide,
predicting which components from the
library could be selected to yield different
network outcomes, and what dosage of ATc
and IPTG would be most experimentally
informative. In the model, the experimentally
determined Smax and Smin values for the
promoters (Table 1) were used; generic values
were assumed for other parameters (see Sup-
plementary Methods for modeling details).

A simulation with PLibT ¼ TX (control
promoter: Smax 918.0, Smin 7.46) leads to
an interesting nonmonotonic expression
landscape with an output peak at intermedi-
ate inputs (Fig. 2b). This occurs because
TetR has simultaneously opposing effects on
yEGFP output—inhibiting the production of

yEGFP by binding to POR-LT, while also relieving LacI inhibition of
yEGFP by binding to PLibT and repressing LacI production. This is
consistent with previous in situ studies of naturally occurring negative
feed-forward loops42. Our synthetic library-modeling approach
enables the investigation of this motif without the hindrance of
interconnected regulatory networks42–44.

By changing the Smin and Smax values of PLibT in the model, we can
computationally examine how different promoters from our library
affect this response landscape. The model predicts significant
differences in output among the members of the promoter library.
Two examples most divergent from the TX simulation are shown in
Figure 2b. Increasing the Smin value of the TetR-regulated promoter
removes almost all expression in low concentrations of IPTG
(PLibT ¼ T8: Smin 30.88), whereas decreasing the Smax value shifts
peak expression to occur only at higher concentrations of ATc (PLibT

¼ T18: Smax 51.75). This demonstrates quantitatively that the same
external induction (ATc or IPTG) can elicit very different responses
from the motif simply due to small changes in promoter strength.

To test these in silico predictions, we assembled three negative feed-
forward loop networks (Fig. 2b) using corresponding components
from our libraries and quantified their output responses to varied
ATc/IPTG inputs using flow cytometry measurement of yEGFP. The
experimental data (Fig. 2c) correlated well with our computational
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Figure 2 Modeling and synthesis of feed-forward

loop networks using a promoter library. TetR-

regulated promoter library data were used in

conjunction with in silico modeling to construct

negative feed-forward loop (NFL) gene networks

with different predicted input-output functions.

(a) Schematic of the network, where PTEF1 is

TEF1 promoter; PLibT is promoter from TetR-
regulated promoter library; and POR-LT is

LacI-TetR dual-regulated OR-gate promoter.

(b) In silico modeling of the network from

component properties predicts yEGFP expression

(output) in response to varied concentrations of

ATc and IPTG (inputs) when three different TetR-

regulated promoters are used. (c) The three

networks were assembled in S. cerevisiae, and

median yEGFP expression was measured by flow

cytometry after 22 h growth of cells in medium

supplemented with 2% galactose plus varying

concentrations of ATc and IPTG. Error bars show

the s.d. of the gated cell population.
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predictions, particularly considering the many nonfitted generic
parameters used in the model. These results demonstrate how small
changes in promoter strength can have dramatic consequences on
network responses. These findings also show that a model built
from just generic parameters and data from individual components
can offer insights into a network response landscape, and that such a
model, when teamed with component libraries, can serve as a
useful, rapid guide for producing networks with different predic-
table characteristics.

Genetic timer networks

Having demonstrated our approach in a relatively simple network
using one promoter library, we next used two promoter libraries in a
more complex network with a richer set of dynamics. Using the
mutual-repression motif of the genetic toggle switch14, we set out to
produce predictable genetic ‘timers’. These timers exploit the finely
balanced nature of a mutual inhibitory network14, where changes in
opposing repressor levels can disrupt bistability, and memory of
induction can be lost as the system resets to its original default
state. These timers are effectively genetic toggle switches operating
in a monostable regime, and their rate of resetting is directly related to
relative expression levels of the two repressors—the further they are
from the balanced values required for bistability14, the more rapidly
memory of induction is lost.

For yeast timers, we used LacI and TetR as the two mutually
repressive gene products (Fig. 3a). LacI is expressed from a TetR-
regulated promoter (PLibT) selected from our component library
described above, and TetR is expressed from a LacI-regulated promo-
ter (PLibL) taken from the second component library. This second
library of promoters (L1–L20 plus control LX) was synthesized and
characterized as before, but with the Lac operator (lacO) in place of
the tandem Tet operators (see Table 1 for promoter data and

Supplementary Methods for sequences). To follow the expression
state of the timers, we placed yEGFP under the control of the LX
promoter, giving an expression read-out directly correlated to TetR
expression (Fig. 3a).

An initial mathematical model based on the properties of compo-
nents from both libraries gave us qualitative insights into how timers
can be set by means of imbalanced mutual inhibition (Supplementary
Methods). It revealed that changing the ratio of expression from the
two opposing promoters affects the reset time. However, due to the
complexity of the biochemical reactions involved, a model built solely
from component data cannot capture important quantitative features
of the network. In particular, the model was not able to accurately
predict by how much the reset time would change. The temporal
dynamics of this system cannot be quantitatively predicted without
first seeing a system in action to dissect some of the lumped
parameters that remain fixed for all possible timers (Supplementary
Methods). To address this, we assembled and tested a single example
timer using the two control promoters (TX-LX); we then used the
experimental data (Fig. 3b) from this system to calibrate a quantita-
tively predictive model for the other 440 possible timers afforded by
our libraries.

The quantitative model gave us predictions as to how reset time
could be varied by promoter selection, specifically by adjusting the
ratio of relative expression from opposing promoters (using Smax –
Smin to determine relative expression for each). We used the model to
quantitatively predict the reset behavior of two timers (T18-LX
and T4-LX) with ratios greater than that for TX-LX and two timers
(T7-L18 and TX-L14) with smaller ratios. These timers were
assembled and tested in yeast. The experimental data for all four
networks fell within the upper and lower bounds of the model
predictions, validating our approach and ability to make quantitative
predictions (Fig. 3c–f).

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

a

gfe

dcb

ATc

tetR lacl

yEGFP

PLibT

PLibL

LX

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Time (h)

N
or

m
al

iz
ed

 y
E

G
F

P

T4-LX

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Time (h)

N
or

m
al

iz
ed

 y
E

G
F

P

T 7-L18

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Time (h)

N
or

m
al

iz
ed

 y
E

G
F

P

TX-L14

10−1 100 101
0

50

100

150

200

T
im

e 
(h

)

(Smax−Smin) ratio

TX-L14

T7-L18

TX-LX

T4-LX
T18-LX

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Time (h)

N
or

m
al

iz
ed

 y
E

G
F

P

T18-LX

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Time (h)

N
or

m
al

iz
ed

 y
E

G
F

P

TX-LX

Figure 3 Predictable genetic timer networks

constructed from two promoter libraries. TetR-

and LacI-regulated promoter libraries were

used to construct a mutually repressive gene

network that acts as a predictable timer.

(a) Schematic of the timer network; PLibL is

promoter from LacI-regulated promoter

library; LX is LacI-regulated control promoter;
and PLibT is promoter from TetR-regulated

promoter library. (b) In silico model of the

network fitted to TX-LX experimental data

(Supplementary Methods) shows yEGFP expression changing over time after ATc induction is removed at time 0. Yeast cells with the TX-LX network

genomically integrated were grown for 36 h with 250 ng/ml ATc to induce the network, washed three times and monitored starting from time 0 until the

expression state reset to a maximum. Normalized yEGFP output (red circles), which was calculated from flow cytometry measurements taken every 12 h,

matches the model output (green lines) well. Both upper and lower bounds of model fittings are plotted (Supplementary Methods). (c–f) Median yEGFP

expression (red circles) was measured by flow cytometry every 12 h for four different promoter combinations (T18-LX, T4-LX, T7-L18 and TX-L14). Cultures

were induced and treated the same as in b. Blue lines are model predictions based on parameters inferred from b. Lower and upper bounds use the

parameters corresponding to lower and upper bounds in b. (g) The relationship between the reset time and the ratio for all of its values is plotted. Lower

and upper bounds use the parameters corresponding to lower and upper bounds in b. The reset time can be approximated as T ¼ C1 + C2/O(|r – C3|), where

T ¼ reset time, C1 ¼ basal reset time, C2 ¼ scale factor and C3 ¼ bifurcation ratio (Supplementary Methods).
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The model with calibrated parameters provides us with a ‘con-
fidence interval’ of reset times for all ratios (Fig. 3g). Closer inspection
of the model reveals that reset times of different timer networks with
low Smin values are approximately proportional to the reciprocal of the
square root of the distance between the Smax – Smin ratio and the
bifurcation ratio (the ideal Smax – Smin ratio for bistability). Mathe-
matically, this is due to a temporal lag in resetting caused by the
network passing through a ‘bottleneck’ as it leaves bistability45,46. This
direct relationship allows timers with any reset time between 50 and
150 h to be chosen simply based on the strengths of the two promoters
selected from the respective libraries (Fig. 3g).

Control of yeast sedimentation timing

To demonstrate how our approach can be readily applied in a
biotechnology scenario, we used the plug-and-play nature of our
timer networks to control the flocculation of yeast. Flocculation occurs
when yeast cells express FLO1, which functions as a yeast-specific
adhesin that causes cells to clump together and sediment from the
medium47–49. The phenotype is crucial in industrial beer, wine and
bioethanol fermentation, as it allows for easy removal of yeast
sediment after all sugars have been converted to ethanol48.

Because the reset times of T4-LX and T18-LX are very close to that
of TX-LX, we chose TX-LX, T7-L18 and TX-L14 to test the applica-
tion of genetic timers. Using these three networks, we controlled the
timing of sedimentation by replacing yEGFP with the FLO1 gene
(Fig. 4a). In our laboratory yeast strain, FLO1 is not expressed, but
replacing its native promoter with a strong promoter reactivates
flocculation, causing sedimentation to occur when a threshold of
FLO1 expression is passed. The timing of sedimentation can therefore
be tied to the resetting of each timer network by choosing an
appropriate regulated promoter from the libraries. With the 441
possible timers, and a choice from two library sets of promoters for
controlling FLO1 expression, we had the potential to produce

417,000 different flocculating networks. We
selected the L7 promoter, which has relatively
high Smax and very low Smin, to give a wide
dynamic range. When LacI was abundant, the
minimal expression from this promoter did
not elicit sedimentation, allowing yeast to
grow in suspension.

We experimentally determined the thresh-
old of FLO1 expression that causes sedimen-
tation (Supplementary Methods). Rescaling
the timer data in Figure 3b,e,f to match the
Smax and Smin values for the L7 promoter
allowed us to plot estimates as to when this
threshold would be passed for our networks
(Fig. 4b). We tested these predictions by
assembling the networks in yeast, and then
growing the yeast cultures until sedimenta-
tion, which occurred days after the initial
induction (ATc) was removed (Fig. 4c). For
the TX-LX, T7-L18 and TX-L14 networks,
sedimentation was seen at 60, 60 and 168 h,
respectively. These findings closely matched
the predicted times assuming a 12-h lag,
presumably due to a longer phenotype
maturation for flocculation compared to
yEGFP fluorescence. This experiment
demonstrates that we can quickly apply pre-
dictable networks built with our approach to

control an industrially relevant phenotype. Such accurate control of
flocculation timing provides a wide window of opportunity to harvest
fermentation product from cells and could be applied to improve
biomass recycling in the biofuels industry.

DISCUSSION

This work establishes a strategy to rapidly increase the number of
network components as well as decrease the time and effort required
to engineer gene networks with desired functions. Our approach is
compatible with plug-and-play synthetic biology and facilitates
gene network construction. Here we focused on generating,
characterizing and using component libraries of promoters, but our
method is applicable to other biomolecular components, as diversity
in nonessential sequence also affects functional efficiency in proteins
and RNA.

Although screening of mutated parts is not a new technique, our
approach represents an advance over previous methods by coupling
qualitative and quantitative modeling with library diversity to guide
the construction of synthetic gene networks with predictable func-
tions. In robust networks like our feed-forward loop, models built
entirely from component property sets are sufficient to guide the
choice of parts required to elicit specific network phenotypes, such as
high sensitivity to inputs or low maximum output. Although previous
studies have shown that it is possible, in some cases, to accurately
predict network behaviors based solely on component properties8,50,
we found that this conclusion cannot be generalized to more complex,
finely balanced networks, such as the timers described here. Instead,
we found that one must first assemble and experimentally characterize
a single exemplary network of interest to create a generalizable
model with quantitative predictive capabilities. The experimental
work needed to construct and test this one network is quickly
offset by the yield of accurate quantitative predictions for all other
possibilities, and the benefit of this is especially significant when

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

a

b

c

TX-LX

T7-L18

0

0

Time following induction (h)

60

60

48

48

72

72

84

TX-L14

144 168 1801560

84 –

– +

100

101

102

103

Time (h)
0 50 100 150

P
ro

je
ct

ed
 F

LO
1 

ex
pr

es
si

on
 (

A
U

)

TX-L14
TX-LX
T7-L18

Sedimentation
due to

flocculation

Normal growth
in solution

ATc

tetR lacI

FLO1
L7

PLibT

PLibL

+

– +

Figure 4 Controlling the timing of yeast sedimentation using a predictable gene network. The synthetic

networks tested in Figure 3b,e,f were used to control the timing of yeast sedimentation caused by

flocculation. (a) Schematic of flocculation gene networks. Flocculation is regulated by replacing yEGFP

and LX in the gene network shown in Figure 3a with FLO1 under the control of the promoter L7.

(b) Rescaled yEGFP data from Figure 3b,e,f were used to project temporal FLO1 expression levels and

predict the timing of cell sedimentation due to flocculation (Supplementary Methods). (c) The timing of

sedimentation from the three synthetic networks. Cultures induced by growth with 250 ng/ml ATc for

36 h were washed twice and grown at high OD600 with shaking and diluted into fresh medium every

12 h, until sedimentation cleared the suspension. Images shown here are 1 ml cultures at 12-h

intervals, 10 min after brief vortexing. Controls: –, growth in 10 mM IPTG; +, growth in 250 ng/ml ATc.
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one considers that each additional component library incorporated
increases the number of potential networks exponentially.

Our strategy effectively moves component ‘tweaking’ to the front-
end of gene network engineering. This arrangement is instinctively
more rational than network retrofitting and is made feasible by the
coupling with mathematical modeling. As component libraries are
produced in parallel at the same point in the process that individual
parts are typically characterized for modeling, they require little extra
effort in return for significant reward. Projects undertaken with this
approach will help accelerate synthetic biology by yielding many more
components for the community, and as library-synthesized compo-
nents are designed to show variation only in intended properties, the
need for extensive characterization of each component is eliminated or
substantially reduced. Our work also provides an accessible method
for introducing predictable, controlled variability to networks, a
feature that is increasingly becoming desirable as synthetic biology
enters its second decade18,19. With advances in modern DNA synthesis
technologies, the range of our approach will expand as synthesis
becomes faster and cheaper, and as longer regions of biomolecules are
able to be specifically varied in a systematic fashion.

METHODS
Strains and media. S. cerevisiae strain YPH500 (a, ura3-52, lys2-801, ade2-101,
trp1D63, his3D200, leu2D1) (Stratagene) was used in all experiments, and all

genomic integrations were specifically targeted to the redundant ura3-52 locus.

Culturing, genetic transformation and verification of transformation were done

as previously described29, using either the TRP1, HIS3 or LEU2 genes as

selectable markers.

Plasmid construction. The TetR-regulated promoter library characterization

vector (pTVGI, Fig. 1b) was adapted from the previously described yeast

integrative plasmid pRS4D129, removing the GAL1/GAL10 promoter region

and replacing it with the S. cerevisiae TEF1 promoter directing TetR expression

and the GAL1 UAS region plus a synthesized library promoter directing yEGFP

expression. A 489-bp span of arbitrary sequence from the gene ura3 was

included between these promoters to buffer any cross-talk between them and to

allow the vector to site-specifically integrate into the ura3-52 locus. For the

LacI-regulated promoter library characterization vector (pLVGI), TetR was

replaced by a synthetic codon-optimized LacI41 that had been altered to remove

both an internal PstI restriction site (without changing the codon sequence or

efficiency) and the hyper-strong SV40 nuclear localization signal. The

control TX promoter was amplified directly from pRS4D1, whereas the LX

promoter and OR-LT promoters were generated, as previously described, by

standard oligonucleotide PCR mutation methods from the TX promoter

and T123 pRS4D1 promoter, respectively29. All plasmids were constructed

and used to transform E. coli to harvest DNA for yeast transformations, as

previously described29.

Promoter library synthesis and screening. Promoters were created from

partially overlapping pairs of 110-mer PAGE-purified oligonucleotides (Sup-

plementary Methods), which were custom synthesized by Sigma-Genosys.

Second strand DNA synthesis by Klenow polymerase was followed by agarose

gel electrophoresis purification to obtain fragments ready for insertion into

characterization vectors34. Upon ligation, DH5a E. coli (New England Biolabs)

were transformed with the plasmid vectors, and clones were selected by

ampicillin resistance. We pooled 104–105 colonies directly from Luria-Bertani

agar plates and harvested them for plasmid using the QIAprep Spin Miniprep

Kit (Qiagen). The promoter plasmid library was then used to transform yeast as

previously described29, scaling up by a factor of 10 and plating on 250 mm �
250 mm plates to yield B3,500 individual colonies. Single colonies (192 total)

were transferred to two 96-well plates (300 ml of media supplemented with 2%

galactose and 250 ng/ml ATc, per well) and grown for 22 h. Cell fluorescence

was measured at 450 nm using a SpectraFluor Plate Reader (Tecan). Approxi-

mately one-quarter of clones produced a detectable level of expression when

TetR was inhibited by ATc, and roughly three-quarters of these responded to

the removal of ATc with a drop in expression, indicating controlled regulation.

Expression was undetectable in glucose. Colonies selected to create our 20-

member library were PCR-tested for single genomic integration, and then

characterized by flow cytometry in the presence and absence of 250 ng/ml ATc.

For LacI-regulated libraries, ATc was replaced with 10 mM IPTG in the

screening and characterization stages.

Flow cytometry and data analysis. Flow cytometry measurements were carried

out as previously described8, running samples on a medium flow rate until

20,000 cells had been collected within a small forward and side scatter gate to

reduce extrinsic noise. Data files were analyzed using MatLab (The Math-

Works), linearizing log-binned fluorescence intensity values and then calculat-

ing the median and s.d. of the gated population. For both promoter library data

(Table 1) and control ATc and IPTG induction curves, 3 ml cultures were

grown for 20 h to an optical density at 600 nm (OD600) of 1.00 at 30 1C with

orbital shaking before measurement. For the negative feed-forward loop and

genetic timer data, 300 ml of cells were grown to OD600 of 1.00 at 30 1C in

96-well format. For the negative feed-forward loop data, cells were grown for

22 h before measurement. For the genetic timer data, cells were grown for 12 h,

a sample was taken for measurement, and then a fraction of the remaining cells

was diluted in fresh medium for the next 12 h of growth.

Flocculation. To obtain flocculating strains, the L7 library promoter was

inserted into pFA6a-KanMX6-pGAL1 in place of the GAL1 promoter

sequences, and PCR amplification from primer pairs FL1 and FL2 was used

to integrate these in place of the wild-type FLO1 promoter as described

previously47. To measure flocculation over time, 1.2 ml cultures were grown

for 12 h to OD600 ¼ 1.50 at 30 1C with orbital shaking. We removed 1 ml for

measurement and replaced with 1 ml of fresh culture medium to continue

growth. For measurement, 1 ml of culture was vortexed for 5 s before sitting for

10 min in a clear 3 ml culture tube. Cultures were photographed with a light

box behind, and the image inverted and auto-contrasted using Picasa imaging

software (Google).

For details of modeling, predictions, sequencing and gene network assembly,

see the Supplementary Methods.

Note: Supplementary information is available on the Nature Biotechnology website.
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