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Finding coarse-grained, low-dimensional descriptions is an important task in the analysis of
complex, stochastic models of gene regulatory networks. This task involves �a� identifying
observables that best describe the state of these complex systems and �b� characterizing the
dynamics of the observables. In a previous paper �R. Erban et al., J. Chem. Phys. 124, 084106
�2006�� the authors assumed that good observables were known a priori, and presented an
equation-free approach to approximate coarse-grained quantities �i.e., effective drift and diffusion
coefficients� that characterize the long-time behavior of the observables. Here we use diffusion maps
�R. Coifman et al., Proc. Natl. Acad. Sci. U.S.A. 102, 7426 �2005�� to extract appropriate
observables �“reduction coordinates”� in an automated fashion; these involve the leading
eigenvectors of a weighted Laplacian on a graph constructed from network simulation data. We
present lifting and restriction procedures for translating between physical variables and these
data-based observables. These procedures allow us to perform equation-free, coarse-grained
computations characterizing the long-term dynamics through the design and processing of short
bursts of stochastic simulation initialized at appropriate values of the data-based observables. ©
2007 American Institute of Physics. �DOI: 10.1063/1.2718529�

I. INTRODUCTION

Gene regulatory networks are complex high-dimensional
stochastic dynamical systems. These systems are subject to
large intrinsic fluctuations that arise from the inherent ran-
dom nature of the biochemical reactions that constitute the
network. Such features make realistic modeling of genetic
networks, based on exact representations of the chemical
master equation �such as the Gillespie stochastic simulation
algorithm1 �SSA�� computationally expensive. Recently

there has been considerable work devoted to developing ef-
ficient numerical algorithms for accelerating the stochastic
simulation of gene regulatory networks2–5 and, more gener-
ally, of chemical reaction networks. Many of these tech-
niques are based on time scale separation and classify the
biochemical reactions as “slow” or “fast”.6–10 In this paper
we combine such acceleration methods with recently devel-
oped data-mining techniques �in particular, diffusion
maps11–13� capable of identifying appropriate coarse-grained
variables �“observables” and “reduction coordinates”� based
on simulation data. These observables are then used in the
context of accelerating stochastic gene regulatory network
simulations; they guide the design, initialization, and pro-
cessing of the results of short bursts of full-scale SSA com-
putation. These bursts of SSA are used to numerically solve
the �unavailable in closed form� evolution equations for the
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observables; such so-called equation-free methods14 for
studying stochastic models have been successfully applied to
complex systems arising in different contexts.15–17 In the
context of gene regulatory networks—but with known
observables—equation-free modeling has been illustrated in
Ref. 4; here we extend the approach to the more general class
of problems where appropriate observables are unknown a
priori.

We describe the state of a gene regulatory network
through a vector

X = �X1,X2,X3, . . . ,XN� , �1.1�

where Xi are the numbers of various protein molecules, RNA
molecules, and genes in the system. The behavior of the gene
regulatory network is described by the time evolution of the
vector X�t�. For naturally occurring gene regulatory net-
works the dimension N of the vector X�t� is, in general,
moderately large, ranging from tens to hundreds of species.
However, the temporal evolution of the network over time
scales of interest can be often usefully described by a much
smaller number n of coordinates. For example, in Ref. 4, we
studied various models of a genetic toggle switch with
N=2, N=4, and N=6 components of the vector X; yet in all
cases, the slow dynamics was effectively one dimensional,
and a single linear combination of protein concentrations
was sufficient to describe the system, i.e., n=1. In this paper
we show how, for this genetic network system, good coarse
variables can be found by data-mining-type methods based
on the diffusion map approach.

This paper is organized as follows: We begin with a brief
description of our model in Sec. II. Section III quickly re-
views the equation-free approach for this type of bistable
dynamics. Given a low-dimensional set of observables, the
main idea is to locally estimate drift and diffusion coeffi-
cients of an unavailable Fokker-Planck equation in these ob-
servables from short bursts of appropriately initialized full
stochastic simulations. In Sec. IV we show how to process
the data generated by stochastic simulations to obtain data-
driven observables through the construction of diffusion
maps.13,18 The leading eigenvectors of the weighted graph
Laplacian defined on a graph based on simulation data sug-
gest appropriate “automated” reduction coordinates when
these are not known a priori. Such observables are then used
to perform “variable-free” computations. In Sec. V we
present lifting and restriction procedures for translating be-
tween physical system variables and the automated observ-
ables. The bursts of stochastic simulation required for
equation-free numerics are designed �and processed� based
on these new coordinates. This combined “variable-free,
equation-free” analysis appears to be a promising approach
for computing features of the long-time, coarse-grained be-
havior of certain classes of complex stochastic models �in
particular, models of gene regulatory networks�, as an alter-
native to long, full SSA simulations. The approach can, in
principle, also be wrapped around different types of full
atomistic/stochastic simulators, beyond SSA, and, in particu-
lar, accelerated SSA approaches such as implicit tau
leaping19 or nested SSA.9,20

II. MODEL DESCRIPTION

Our illustrative example is a two-gene network in which
each protein represses the transcription of the other gene
�mutual repression�. This type of system has been engineered
in E. coli and is often referred to as a genetic toggle
switch.21,22 The advantage of this simple system is that it
allows us to test the accuracy of computational methods by
direct comparison with results from long-time stochastic
simulations. More details about the model can be found in
Ref. 23 and in our previous paper.4 The system contains two
genes with operators O1 and O2, two proteins P1 and P2, and
the corresponding dimers, i.e., N=6 in Eq. �1.1�. The produc-
tion of P1 �P2� depends on the chemical state of the upstream
operator O1 �O2�. If O1 is empty then P1 is produced at the
rate �1 and if O1 is occupied by a dimer of P2, then protein
P1 is produced at a rate �1��1. Similarly, if O2 is empty
then P2 is produced at the rate �2 and if O2 is occupied by a
dimer of P1, then protein P2 is produced at a rate �2��2.
Note that, for simplicity, transcription and translation are de-
scribed by a single rate constant. The biochemical reactions
are �compare with Ref. 4�

� �
�1

�1O1+�1P2P2O1

P1, � �
�2

�2O2+�2P1P1O2

P2, �2.1�

P1 + P1�
k−1

k1

P1P1, P2 + P2�
k−2

k2

P2P2, �2.2�

P2P2 + O1�
k−o1

ko1

P2P2O1, P1P1 + O2�
k−o2

ko2

P1P1O2, �2.3�

where overbars denote complexes. Equations �2.1� describe
production and degradation of proteins P1 and P2, Eqs. �2.2�
are dimerization reactions, and Eqs. �2.3� represent the bind-
ing and dissociation of the dimer and DNA.

The state vector for our system is

X = �P1,P2,P1P1,P2P2,O1,O2� , �2.4�

where P1 and P2 are numbers of proteins, P1P1 and P2P2 are
numbers of dimers, and O1� �0,1� and O2� �0,1� are states
of operators. Assuming that we have just one copy of gene 1
and one copy of gene 2 in the system, then the values of O1

and P2P2O1, respectively, O2 and P1P1O2, are related by the
conservation relations, namely,

P2P2O1 = 1 − O1, P1P1O2 = 1 − O2.

By virtue of Eq. �2.1�, O1=1 means that the first protein is
produced with rate �1, while O1=0 means that it is produced
with rate �1��1 �similarly for the second protein�.

Models such as the one defined by Eqs. �2.1�–�2.3� can
be validated experimentally, by comparing their predictions
with steady-state distributions of protein abundances ob-
tained through single cell fluorescence measurements of in-
tercellular variability in protein expression levels.
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III. BRIEF REVIEW OF EQUATION-FREE
COMPUTATIONS

Suppose we have a well-stirred mixture of N chemically
reacting species; furthermore, assume that the evolution of
the system can be described in terms of n�N slow variables
�observables�. In the following we assume that n=1, and
denote this variable Q. The approach carries through for the
case of a relatively small number of slow variables as well.
The variable Q might be the concentration of one of the
chemical species or some function of these concentrations
�e.g., a linear combination of some of them�. In Sec. IV A we
show how variable-free methods can be used to suggest an
appropriate Q. Let R denote a vector of the remaining �fast,
“slaved”� system observables which, together with Q, pro-
vide a basis for the simulation space. Our assumption implies
that �possibly, after a short initial transient� the evolution of
the system can be approximately described by the time-
dependent probability density function f�q , t� for the slow
variable Q that evolves according to the following effective
Fokker-Planck equation:24

�f

�t
�q,t� =

�

�q
�− V�q�f�q,t� +

�

�q
�D�q�f�q,t��� . �3.1�

If the effective drift V�q� and the effective diffusion coeffi-
cient D�q� are explicitly known functions of q, then Eq. �3.1�
can be used to compute interesting long-time properties of
the system �e.g., the equilibrium distribution and transition
times between metastable states�. Assuming that Eq. �3.1�
provides a good approximation,21,23 and motivated by the
formulas

V�q� = lim
�t→0

	Q�t + �t� − q
Q�t� = q�
�t

, �3.2�

D�q� =
1

2
lim

�t→0

	�Q�t + �t� − q�2
Q�t� = q�
�t

, �3.3�

we used in Refs. 15–17 and 25 the results of short �-function
initialized simulation bursts to estimate the average drift, V,
and diffusion coefficient D. Note that, in our context, the
limit �t→0 in Eqs. �3.2� and �3.3� should be interpreted as
“�t small, but not too small,” i.e., the short bursts are short
in the time scale of the slow variable, yet long in comparison
to the characteristic equilibration time of the remaining sys-
tem variables.

The equilibrium solution of Eq. �3.1� is proportional to
exp�−���q��, where the effective free energy ��q� is de-
fined as

���q� = − �
0

q V�q��
D�q��

dq� + ln D�q� + const. �3.4�

Consequently, computing the effective free energy and the
equilibrium probability distribution can be accomplished
without the need for long-time stochastic simulations. A pro-
cedure for computationally estimating V�q� and D�q� is as
follows:

�A� Given Q=q, approximate the conditional density
P�r 
Q=q� for the fast variables R. Details of this pre-
paratory step were given in Ref. 4.

�B� Use P�r 
Q=q� from step �A� to determine appropriate
initial conditions for the short simulation bursts and run
multiple realizations for time �t. Use the results of
these simulations and the formulae �3.2� and �3.3� to
estimate the effective drift V�q� and the effective diffu-
sion coefficient D�q�.

�C� Repeat steps �A� and �B� for sufficiently many values
of Q and then compute ��q� using formula �3.4� and
numerical quadrature.

Determining the accuracy of these estimates and, in particu-
lar, the number of replica simulations required for a pre-
scribed accuracy, is the subject of current work. An impor-
tant feature of this algorithm is that it is trivially
parallelizable �different realizations of short simulations
starting at “the same q” as well as realizations starting at
different q values can be run independently, on multiple pro-
cessors�.

A representative selection of equation-free results from
our previous paper,4 for a stochastic model of a gene regula-
tory network, is provided in Fig. 1. In Ref. 4 the �good�
observable Q was assumed to be known a priori. The upper
left panel in Fig. 1 shows a sample time series of Q, clearly
indicative of bistability, generated using the stochastic
model, while the upper right panel shows the effective free
energy �� computed using Eq. �3.4� as the parameter �
�1=�2 is varied. The equation-free steady-state distribu-
tion of Q obtained from this effective free energy is in ex-
cellent agreement with histograms produced using long-time
simulation �lower left panel�. Equation-free computation has
also been used4 to compute “stochastic bifurcation diagrams”
�an example is shown in the bottom right panel of Fig. 1�
using an extension of deterministic bifurcation
computation.26 We believe that this array of equation-free
numerical techniques holds promise for the acceleration of
computer-assisted analysis of gene regulatory networks. We
now extend this analysis to systems where the “good” ob-
servables are unknown a priori by describing diffusion map
based variable-free methods.

IV. VARIABLE-FREE METHODS

A. Theoretical framework

To find a good, low �n-�dimensional representation of
the full N-dimensional stochastic simulation data, we start by
exploring the phase space of most likely configurations of
the system through extensive stochastic simulations; these
configurations X �or a representative sampling of them� at,
say, M different times are stored for processing. From M
such recordings we obtain a set of M vectors X�1� , . . . ,X�M�

in RN which constitute the input to the diffusion map dimen-
sionality reduction approach we will now describe. A crucial
step for dimensionality reduction is the definition of a mean-
ingful local distance measure between configurations. For
continuous systems with equal noise strengths in all vari-
ables, one may use the following pairwise similarity matrix:
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W̃ij = exp�− � �X�i� − X�j��
�

�2� , �4.1�

where �·� is the standard Euclidean norm in RN and � is a
characteristic scale for the exponential kernel which quanti-
fies the “locality” of the neighborhood in which the Euclid-
ean distance is considered �dynamically� meaningful.11

For discrete chemical and biological reactions, as well as
in other systems where the components of the data vectors
may be disparate quantities varying over different orders of
magnitude �possibly including even Boolean variables�, the
simple Euclidean norm in Eq. �4.1� with a single scaling
factor � equal for all components may, of course, not be
appropriate. In this case, it is reasonable to consider different
scalings for the N different components, using an
N-dimensional weight vector

a = �a1,a2, . . . ,aN� , �4.2�

where ai	0, for i=1, . . . ,N, and define a weighted Euclid-
ean norm

�X�a
2 = �

j=1

N

�ajXj�2. �4.3�

This norm replaces the standard Euclidean norm in Eq. �4.1�,
where we may now choose �=1, since this scaling can be
absorbed into the vector a; thus we replace Eq. �4.1� by

W̃ij = exp�− �X�i� − X�j��a
2� . �4.4�

The elements of the matrix W̃ are all less than or equal to 1.

Nearby points have W̃ij close to 1, whereas distant points

have W̃ij close to 0. In the diffusion map approach, given

� �0,1� �the choice of this parameter value is discussed
later�, we define the matrix W by

Wij = ��
k=1

M

W̃ik�−
��
k=1

M

W̃jk�−


W̃ij . �4.5�

Next, we define a diagonal M �M normalization matrix D
whose values are given by

Dii = �
k=1

M

Wik. �4.6�

Finally, we compute the eigenvalues and right eigenvectors
of the matrix

K = D−1W . �4.7�

In this paper we will mainly work with the parameter 
=0.
However, in other applications different values of 
 may be
more suitable �see Appendix A�. As discussed in Refs. 13,
18, and 27, if there exists a spectral gap among the eigen-
values of this matrix, then the leading eigenvectors may be
used as a basis for a low-dimensional representation of the
data �see Appendix A�. To compute these eigenvectors, we
can make use of the fact that

K = D−1/2SD1/2 where S = D−1/2WD−1/2 �4.8�

is a symmetric matrix. Hence, K and S are similar and they
have the same eigenvalues. Since S is symmetric, it is diag-
onalizable with a set of M eigenvalues

�0  �1  ¯  �M−1, �4.9�

whose eigenvectors U j, j=1, . . . ,M form an orthonormal ba-
sis of RM. The right eigenvectors of K are given by

V j = D−1/2U j . �4.10�

Since K is a Markov matrix, all its eigenvalues are smaller
than or equal to 1 in absolute value. Moreover, if the param-
eter � in Eq. �4.1� is large enough �and, thus, the norm vector
in Eq. �4.4� is “small enough”�, all points are �numerically�
connected and the largest eigenvalue �0=1 has multiplicity 1
with corresponding right eigenvector

FIG. 1. �Color online� Summary of
equation-free results from Ref. 4. To
compute the figures we used models
�2.1�–�2.3� where Eqs. �2.2� and �2.3�
were assumed to be at quasi-
equilibrium; for parameter values, see
caption of Fig. 5 in Ref. 4.
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V0 = �1,1, . . . ,1� . �4.11�

We define the n-dimensional representation of
N-dimensional state vectors by the following diffusion map:

�n:X�i� → �V1
�i�,V2

�i�, . . . ,Vn
�i��; �4.12�

that is, the point X�i� is mapped to a vector containing the ith
coordinate of each of the first n leading eigenvectors of the
matrix K. This mapping �n: RN→Rn is defined only at the
M recorded state vectors. We will show later that it can be
extended to nearby points in the N-dimensional phase space,
without full recomputation of a new matrix and its eigenvec-
tors. In Appendix A we provide a theoretical justification for
this method as a dynamically useful dimensionality reduction
step.

B. Computation of data-based observables

We replaced Eq. �4.1� by Eq. �4.4� where the weight
vector �4.2� needs to be further specified. Two natural
choices for the values of components of the weight vector
a= �a1 ,a2 , . . . ,aN� immediately arise. One option is to regard
the absolute values of the components of the state vector X
as of “equal importance,” i.e.,

ak = � for k = 1,2, . . . ,N , �4.13�

where � is a single method parameter; this is identical to the
use of a single � in Eq. �4.1�, namely �=�−1.

The above approach uses the Euclidean distance be-
tween data vectors as the basis for graph Laplacian construc-
tion and eigenanalysis. In our case, the components of these
vectors are concentrations of different species �e.g., integer
numbers of protein molecules, each with its own range over
the data set�. Moreover, the data vectors contain integers �0
and 1� representing states of Boolean operators. This moti-
vates a second natural choice of the weight vector a
= �a1 ,a2 , . . . ,aN�. We rescale the state vector X to span the
symmetrical domain �cube� in N-dimensional space, i.e.,

ak =
�̃

max
i

Xk
�i� − min

i
Xk

�i� for k = 1,2, . . . ,N , �4.14�

where the maximum and minimum values are computed over
all i=1, . . . ,M. Formula �4.14� implies that components of
the vector X�i�−X�j�, i , j=1, . . . ,M, satisfy

Xk
�i� − Xk

�j� � �− �̃,�̃�

for k = 1, . . . ,N, and i, j = 1, . . . ,M .

The difference between Eqs. �4.13� and �4.14� is that the first
formula implicitly assumes that the fluctuations in different
components of the state vector X are equally important, i.e.,
the absolute values of fluctuations are important. Formula
�4.14� on the other hand implies that relative changes �com-
pared to the maximal observed change� in each component
are more representative than the absolute values of the
changes. We will see below that Eq. �4.13� appears more
suitable for our variable-free analysis.

1. Comparison of Formulae „4.13… and „4.14…

Using our illustrative gene regulatory network example
�2.1�–�2.3� we now study the dependence of the eigenvectors
of the matrix K on the weighting vector �a1 ,a2 , . . . ,aN�. We
run the long-time Gillespie based stochastic simulation of
Eqs. �2.1�–�2.3� to obtain a representative set of M state vec-
tors using the following dimensionless stochastic rate con-
stants �1=�2=1.14, �1=�2=0, �1=�2=7.5�10−4, k1=k2

=10−3, k−1=k−2=10, ko1=ko2=0.4, k−o1=k−o2=10. After re-
moving initial transients, we started recording the values of
the state vector �2.4� every 2�108 SSA time steps. We made
2000 recordings to obtain a data file with M =2000 state
vectors. Next, we use these state vectors X�i� to compute the
M �M matrix K and its eigenvectors. We use formula �4.13�
to compute W and D by Eqs. �4.4�–�4.6�. Then we use im-
plicitly restarted Arnoldi methods �ARPACK package28� to
find the eigenvectors corresponding to the highest eigenval-
ues of the symmetric matrix S given by Eq. �4.8�. Finally, we
compute the eigenvectors of K=D−1W by Eq. �4.10�.

The formula �4.13� has a single parameter � which is
free for us to specify. It is easy to check numerically that the
larger the “local neighborhood” size selected �that is, the
smaller the � value� the denser the connections between data
points in the graph. Table I shows the highest eigenvalues for
different values of �. We already know from Ref. 4 that the
system is effectively one dimensional. A good observable for
the system is known to be Q= P2− P1, i.e., the difference
between the first two coordinates of the state vector. How-
ever, the protein concentrations P1 or P2 were also found to
give good equation-free results.

We plot the “empirical” good observable of each data
point i �its P1 component, i.e., X1

�i�, or the difference of its P1

and P2 components, i.e., Q=X2
�i�−X1

�i�� versus the one-
dimensional representation �1�X�i�� �see Eq. �4.12�� of the
point. The results are given in Fig. 2 for two different values
of �. The fact that the empirical coordinate Q appears to
effectively be one to one with the “automated” coordinate
�1�X�i�� for all points in the data set confirms that Q is
indeed a good coordinate for data representation �the figure
clearly shows Q as the graph of a function above �1�X�i��,
i.e., that the relation between Q and �1�X�i�� is one to one�.
The P1 vs �1�X�i�� graph confirms that P1 is also a good
observable; it is also approximately one to one with �1�X�i��,
yet the slightly “fat curve” suggests that Q is a “better” ob-
servable.

The dependence of the variable-free results on the value
chosen for � may be rationalized through Eq. �4.1�. As dis-

TABLE I. Top eigenvalues of matrix K computed using Eq. �4.13� for 

=0 in Eq. �4.5�.

� �0 �1 �2 �3

0.02 1.000 00 0.999 86 0.945 06 0.913 60
0.01 1.000 00 0.999 20 0.777 57 0.711 22
0.005 1.000 00 0.992 79 0.443 52 0.355 15
0.002 1.000 00 0.762 62 0.107 15 3.3�10−2

0.001 1.000 00 0.283 46 1.2�10−2 1.1�10−3

0.0005 1.000 00 7.5�10−2 1.0�10−3 1.5�10−4
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cussed in Sec. IV B, our parameter � is analogous to an
inverse “cutoff length” in the computation of the diffusion
map kernel; if it is too large, then the graph becomes discon-
nected. Clearly, it is a model parameter that has to be opti-
mized depending on the problem; our results for �=0.0005
show a pure linear relation between the “empirical” Q and
the “automated” �1�X�i�� observables. Increasing � by a fac-

tor of 2 corresponds to raising the elements of the matrix W̃
to the fourth power. This change in weight factor �followed
by the normalization of Eq. �4.6�� leads to a different clus-
tering of the data points. Large � implies that Euclidean
distances are meaningful when small; this results in a “more
clustered” data set, where nearby data points �e.g., points
within one potential well� appear �in diffusion map coordi-
nates� relatively closer, while points far away �e.g., points in
different potential wells� appear �in diffusion map coordi-
nates� relatively more distant. Indeed, in the case of continu-
ous variables, in the limit of large � the eigenvectors of the
diffusion map converge to the eigenfunctions of a corre-
sponding Fokker-Planck diffusion operator. In the case of
two deep potential wells, this eigenfunction is approximately
constant in the two wells with a sharp transition between
them. This might explain the slightly flat regions at the two
edges of the apparent curve in the middle panel of Fig. 2 for
�=0.002; points within the same potential well may differ in
Q, yet appear more nearby in the “automated” observable.
We also include a plot of the relation between Q and the
component of the data in the second eigenvector �2�X�i�� for
comparison.

Next we show that the weight vector computed using the
formula �4.14� �based on the magnitude of relative state vari-
able changes� is unsuitable for our variable-free analysis. We
use the same set of M =2000 state vectors X�i� to compute the
M �M matrix K and its eigenvectors, using formula �4.14�
to compute W and D by Eqs. �4.4�–�4.6�. A single parameter
�̃ still remains to be specified in formula �4.14�. We now
again compare the “empirical” and “automated” observables
of all data points �Q= P2− P1 as a function of �1�X�i��, the
one-dimensional representation based on the first nontrivial
eigenvector of the matrix K�. The results are given in Fig. 3
for two different values of �̃. We see that the data split into
four curves. Each curve corresponds to a distinct combina-
tion of gene operator states �actually, two of the curves ef-
fectively coincide�. There are exactly four possibilities of
gene states taken from the set

�O1,O2� � ��0,0�,�0,1�,�1,0�,�1,1�� .

If we use formula �4.13�, then the contribution of the dis-
tance between gene operator states to the data Euclidean dis-
tance is negligible compared to the fluctuations of the protein
numbers. Local distances computed using the scaling in for-
mula �4.14� are clearly not representative of the similarity of
nearby �in this metric� points for the system dynamics: there
is no one-to-one correspondence between the empirically
known “good observable” Q and the “automated” �1�X�i��.
Indeed, for the parameter values of our simulation, transi-
tions between the 0 and 1 states of the operators are very fast
�“easy”�; on the other hand the Euclidean distance of two

FIG. 2. Variable-free results using for-
mula �4.13� and �=0.002 �left panels�
or �=0.0005 �right panels�. We plot
�1�X�i�� which corresponds to eigen-
value �1 as a function of Q= P2− P1

�top panels� and as a function of P1

�center panels�. We also plot �2�X�i��
which corresponds to eigenvalue �2 as
a function of Q= P2− P1 �bottom
panels�.
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data points that differ only in these states is large when com-
puted through the formula �4.14�.

An alternative approach to computing the effective rate
in Eq. �2.1� can be obtained assuming that reaction �2.2� is
fast and that we have a lot of protein molecules in the sys-
tem. Then the quasi-steady-state assumption gives the for-
mula P1P1=2k1 /k−1P1

2. Hence, we can write the number of
dimers as a simple function of the number of monomer pro-
teins. On the other hand, using the same approximation in
Eq. �2.3�, we obtain

O1 =
k−o1

ko1P2P2 + k−o1

. �4.15�

Equation �4.15� gives O1 as a real number in the interval
�0, 1�. This number is a good approximation for computing
the effective rate in Eq. �2.1�. However, it is not a value of
the Boolean variable O1. It is only a probability that the gene
“is on” at the given time.

If, on the other hand, the “on-off” operator transitions
were slow, then Fig. 3 would be quite informative: it would
suggest that we should augment our observables with the
Boolean variables O1 and O2, since these are “slow.” Be-
cause of the Boolean nature of the gene operator variables, it
is not possible to know a priori how often these transitions
occur, and, consequently, how to scale the quantized Boolean
state distance so that it “meaningfully” participates in the
Euclidean distance used for diffusion map analysis. As our
diffusion map computations stand, we do not take into ac-
count the temporal proximity of points—when they have
been obtained from the same transient. If such information is
taken into account, it is conceivable that temporal proximity
would provide guidance in choosing the components of
weight vectors �especially for Boolean variables which
change in a quantized manner� so that “local” Euclidean dis-
tances are indeed representative of the dynamical proximity
between data points.

V. VARIABLE-FREE COMPUTATIONS

We now couple the above automated detection of ob-
servables with the equation-free computations in Ref. 4 in
what we will refer to as “variable-free, equation-free” meth-
ods. The results in this section are for the model parameter
values given in Sec. IV B 1 using the weight vector defined
by Eq. �4.13� with �=0.0005 and kernel parameter 
=0 �the
standard, normalized graph Laplacian� in Eq. �4.5�.

The data plot in terms of the observable Q and the com-
ponent in the eigenvector �1�X�i�� in Fig. 2 suggested that a

single diffusion map coordinate, denoted Qdmap�1�X�i��, is
sufficient to characterize the system dynamics. The diffusion
map coordinate is found by performing the eigencomputa-
tions described in Sec. IV A using the full state vector
�N=6� at each of the M =2000 recorded SSA data points
�every 2�108 SSA time steps� as input to our numerical
routines.

In our previous paper4 we described an approach to com-
pute an effective free energy potential in terms of the observ-
able Q= P2− P1. Variable-free computation of the effective
free energy is now feasible using a similar approach modi-
fied to analyze simulation data in terms of the coordinate
Qdmap. Figure 4 plots the effective potential �� in terms of
the automated reduction coordinate Qdmap. To evaluate the
effective drift �V� and diffusion �D� coefficients required in
the construction of the effective free energy �Eq. �3.4�� we
choose a value of Qdmap, locate instances when it appears in
the simulation database, record its subsequent evolution
within a fixed time interval, and then average over these
instances to estimate the rate of change in the mean and the
variance. This procedure is repeated for a grid of Qdmap val-
ues enabling numerical evaluation of the integral in Eq.
�3.4�. The result of this analysis is compared in Fig. 4 with
the potential obtained by directly constructing the probability
distribution f�qdmap� from the time series and employing the
relationship ���Qdmap��−log�f�qdmap��.

Section V B describes a lifting procedure that allows
short bursts of simulation, instead of long-time simulation, to
be used in variable-free estimation of effective drift and dif-
fusion coefficients. The central idea of “variable-free,

FIG. 3. �Color� Variable-free results
using formula �4.14� and �̃=2 �left
panel� or �̃=0.1 �right panel�; data
points colored according to gene
states: black= �0,0�, green= �0,1�,
blue= �1,0�, and red= �1,1�. We plot
�1�X�i�� which corresponds to eigen-
value �1 as a function of Q= P2− P1.

FIG. 4. Effective free energy �� as a function of Qdmap from binning of all
data points using a SSA database of 237 time steps �solid line� and computed
from numerical integration of Eq. �3.4� using a 234 point subsampling �keep-
ing 1 out of every 8 points� of this database �dashed line�. Numerical inte-
gration performed using a more severe subsampling of the database with 231

points produces an effective free energy profile with an unacceptable level
of noise.
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equation-free” methods is to perform equation-free analysis
in terms of diffusion map variables, based on short bursts of
SSA simulation in the original variables. This strategy re-
quires an efficient means of converting between the physical
variables of the system and those of its diffusion map
�a restriction step� and vice versa: lifting from the diffusion
map back to physical variables. For small sample sizes,
eigendecomposition of the symmetric kernel S �defined in
Eq. �4.8�� yields the diffusion map variables for each data
point; yet, as the number of sample data points increases, the
associated computational costs become prohibitive. The
Nyström formula29,30 for eigenspace interpolation is a viable
alternative to repeated matrix eigendecompositions for com-
puting diffusion map coordinates of new data points gener-
ated during the course of a simulation. Eigenvectors and ei-
genvalues of the kernel S are related by SU j =� jU j, or
equivalently

Uj�X�i�� =
1

� j
�
k=1

M

SikUj�X�k�� , �5.1�

where Uj�X�i�� denotes the component of the jth eigenvector
associated with state vector X�i�. Eigenvector components as-
sociated with a new state vector Xnew cannot be computed
directly from Eq. �5.1� because entries of the matrix S are
defined only between pairs of data points in the original data

set. Defining the M �1 vector Ŵnew of exponentials of the
negative squares of the distances between the new point and
database points by

Ŵi
new = exp�− �Xnew − X�i��a

2� , �5.2�

and the M �1 vector Wnew by

Wi
new = ��

k=1

M

W̃ik�−
��
k=1

M

Ŵk
new�−


Ŵi
new �5.3�

allows the generalized kernel vector Snew to be defined as
follows:

Si
new = ��

k=1

M

Wik�−1/2��
k=1

M

Wk
new�−1/2

Wi
new. �5.4�

The entries in Snew quantify the pairwise similarities between
the new point Xnew and database points consistent with the
definition of S in Eq. �4.8�.30

A. Restriction from physical to diffusion map variables

The Nyström formula29 is used to find the eigenvector
component Uj�Xnew� associated with a new state vector Xnew

Uj�Xnew� =
1

� j
�
i=1

M

Si
newUj�X�i�� , �5.5�

allowing the eigenvectors of the matrix K �and thereby the
diffusion map coordinates� associated with Xnew to be com-
puted using Eq. �4.10�. A full eigendecomposition is typi-
cally performed first for a representative subset of the �large�
number of SSA data points and the Nyström formula is then
used to perform the restriction operation in Eq. �5.5� which
amounts to interpolation in the diffusion map space.

B. Lifting from diffusion map to physical variables

The process of lifting �shown schematically in Fig. 5�
consists of preparing a detailed state vector with prescribed
diffusion map coordinates Qdmap

targ . The main step in our lifting
process is the minimization of the following objective func-
tion:

Obj�Qdmap�X�� = �obj�Qdmap�X� − Qdmap
targ �2, �5.6�

where �obj is a weighting parameter that controls the shape of
the objective away from its minimum at Qdmap�X*�=Qdmap

targ .
The objective function is a smooth function of Qdmap�X� but
is not necessarily as smooth in the physical variables X. The
implicit dependence of Qdmap on X makes this optimization
problem nontrivial.

We use here, for simplicity, the method of simulated
annealing31,32 �SA� to solve the optimization problem, and
identify a value of the state vector X* with the target diffu-
sion map coordinates Qdmap

targ . SA is attractive since it does
not require calculation of derivatives of Qdmap�X� with re-
spect to the physical variables. The SA routine32 employs a
“thermalized” downhill simplex method as the generator of
changes in configuration. The simplex, consisting of N+1
vertices, each corresponding to a trial state vector, tumbles
over the objective landscape defined by Eq. �5.6� sampling
new state vectors as it does so. The control parameter of the
method is the “annealing temperature” which controls the
rate of simplex motion. At high temperatures the method
behaves like a global optimizer, accepting many proposed
configurations �even those that take the simplex uphill, i.e.,
in the direction of increasing objective function value�. At
low temperatures a local search is executed and only down-
hill simplex moves are accepted. The objective defined in
Eq. �5.6� has numerous local minima in X �i.e., many differ-
ent vectors of physical variables X satisfy Qdmap�X�=Qdmap

targ �
and, for our purposes, it is sufficient to locate any such local
minimum; a modest, computationally inexpensive, annealing
schedule suffices for this.

The starting simplex configuration for this N-parameter
minimization may be selected at random or �more reason-

FIG. 5. A schematic of the procedure for lifting from diffusion map coor-
dinate Qdmap�X� to six-dimensional state vector X via minimization of qua-
dratic constraint potential Obj�Qdmap�X��. Target values of the diffusion map
coordinate are shown at the base of the figure, with the potential function to
be minimized in each case indicated above these targets. For each diffusion
map coordinate value shown, three consistent state vectors �generated by
lifting� are indicated at the top of figure.

155103-8 Erban et al. J. Chem. Phys. 126, 155103 �2007�

Downloaded 18 Jul 2007 to 128.197.51.73. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ably� by taking those state vectors in the existing database
with diffusion map coordinates closest to the target Qdmap

targ . It
is important to note that the SA optimization scheme requires
the Nyström formula at each iteration to compute
Qdmap�Xtrial� for trial state vectors, and thus evaluate the ob-
jective function value, which determines whether the con-
figuration will be accepted or not. Once the objective has
been evaluated at each of the starting vertices, the following
steps are repeated until a minimum is located:

�a� move the simplex to generate a new state vector Xtrial;
�b� evaluate the objective function value at the new state

vector Obj�Qdmap�Xtrial��; and
�c� decrement the annealing temperature.

The downhill simplex method prescribes the motion in step
�a� making a selection from a set of moves according to the
local objective “terrain” �set of objective values at the verti-
ces encountered�. Step �b� requires an evaluation using the
Nyström formula. We note here that this lifting strategy pre-
pares state vectors with desired diffusion map coordinates
using search algorithm “dynamics”. The suitability of this
approach relative to alternatives that employ physical dy-
namics �e.g., using constrained evolution of the stochastic
simulator in the spirit of the SHAKE algorithm in molecular
dynamics33� is a relevant and interesting question that merits
further investigation.

C. Illustrative numerical results

Equipped with restriction and lifting operators between
physical and “automated” variables, we can now perform all
the equation-free tasks of Ref. 4 in the diffusion map coor-
dinate Qdmap, i.e., in variable-free mode.

A procedure for variable-free computational estimation
of V�q� and D�q� in Eq. �3.4� is as follows:

�A� At the value Qdmap=qdmap lift to a consistent state vec-
tor using the approach described in Sec. V B.

�B� Use the state vector computed in step �A� as an initial
condition for a short simulation burst and run multiple
realizations for time �t. Restrict the results of these
simulations �Sec. V A� and use definitions �3.2� and
�3.3� �with Qdmap�t� instead of Q�t�� to estimate the
effective drift V�qdmap� and the effective diffusion co-
efficient D�qdmap�.

�C� Repeat steps �A� and �B� for sufficiently many values
of Qdmap and then compute ��q� using formula �3.4�
and numerical quadrature.

We performed lifting for three values of the automated re-
duction coordinate �Qdmap=−1.5,0 ,1.5�, generating several
replicas in each case. From Fig. 6 it is apparent that the
selected values of Qdmap are located near the “rims” of the
wells of two local minima on the effective free energy land-
scape for this system. The state vectors generated by lifting
are shown at the top of Fig. 5. Figure 6 plots the SSA simu-
lation evolution, initialized at these state vectors, in the ob-
servable Qdmap. Also shown in Fig. 6 is the steady-state dis-
tribution in terms of Qdmap obtained from long SSA runs.
Estimates for drift �V� and diffusion �D� coefficients at Qdmap

values of −1.5 and 0 produced by sampling the simulation
database and using the lifting procedure described in this
paper are compared in Table II. It should be possible to reach
a better agreement between the coefficient estimates based
on the long simulation database and those obtained by a
lifting procedure if we evolve the actual model dynamics
with a constraint on the prescribed Qdmap value—possibly
through a parabolic constraint potential of the type used in
umbrella sampling �see also the “run and reset” procedure
described in Refs. 4 and 34�. The effective free energy pre-
dicted by analyzing the full simulation database in terms of
Qdmap can be found in Fig. 4.

VI. SUMMARY AND CONCLUSIONS

The knowledge of good observables is vital in our ability
to create effective reduced models of complex systems, and
thus to analyze and even design their behavior at a
macroscopic/engineering level more efficiently. In this paper
we illustrated a connection between computational data min-
ing �in particular, diffusion maps and the resulting low-
dimensional description of high-dimensional data� with com-
putational multiscale methods �in particular, certain
equation-free algorithms�. Our illustrative example consisted
of a model gene regulatory network known to exhibit
bistable �switching� behavior in some regime of its param-
eter space. We also presented examples of lifting and restric-
tion protocols that enable the passing of information between

FIG. 6. Drift in the diffusion map coordinates. The shaded horizontal boxes
indicate the steady-state probability distribution for M =2000. Points from
SSA trajectories are shown at intervals of 3�106. Initial configurations for
these runs are those shown in Fig. 5 prepared by lifting from Qdmap values of
�−1.5,0 ,1.5�. Trajectories drift towards the most populated regions of the
distribution.

TABLE II. Estimates for drift �V� and diffusion �D� coefficients at Qdmap

values of −1.5 and 0 using initial conditions drawn from the simulation
database and prepared by lifting.

�Qdmap�0

Database Lifting

V D V D

−1.5 3.3�10−5 4.7�10−6 2.1�10−5 3.2�10−6

0 5.3�10−6 4.0�10−6 7.9�10−8 4.1�10−6
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detailed state space and reduced “diffusion map coordinate”
space. These protocols allow us to “intelligently” design
short bursts of appropriately initialized stochastic simula-
tions with the detailed model simulator. Processing the re-
sults of these simulations in diffusion coordinate space forms
the basis for the design of subsequent numerical experiments
aimed at elucidating long-term system dynamic features
�such as equilibrium densities, effective free energy surfaces,
escape times between different wells, and their parametric
dependence�. In particular, we confirmed that previously,
empirically known, observables were indeed meaningful
coarse-grained coordinates.

In traditional diffusion map computations, a single scalar
�a scaled Euclidean norm� forms the basis for the identifica-
tion of good reduced coordinates �when they exist�. An im-
portant issue that arose in our example, due to the disparate
nature, value ranges, and dynamics of different data vector
components, was the selection of appropriate relative scaling
among data component values. The computational approach
we used was based on the data ensemble, without any con-
tribution from the dynamical proximity between data points
collected along the same trajectory. We believe that incorpo-
rating such information will be very useful in determining
relative scalings among disparate data components; finding
ways to integrate such information among data ensembles
collected in different experiments, and possibly with differ-
ent sampling rates will greatly assist in this direction.

Our illustrative example consists of a simple caricature
of the genetic switch described by the six-dimensional state
vector X given by Eq. �2.4�. More realistic gene regulatory
networks are described by the state vector X given by Eq.
�1.1� whose dimension N ranges from tens to hundreds of
species. It is worth noting that large values of N do not
complicate the variable-free part of the algorithm. The di-
mensionality N of the microscopic model appears only in the

computation of the weighted Euclidean norm in Eq. �4.4�. W̃
computed in Eq. �4.4� is an M �M matrix where M is the
number of points in the data set considered. The computa-
tional intensity of the diffusion map part of the algorithm
scales therefore with M and is independent of the dimension-
ality N of the original data set. Of course, the stochastic
simulation from which the data for the diffusion map ap-
proach are collected depends on both the number of species
and the nature �e.g., stiffness� of the model dynamics. After
the data collection process, the diffusion map computations
presented will, in principle, require the same effort for the
same number of data points and systems that have the same

effective dimension n. It is precisely this effective dimension-
ality n of the reduced �macroscopic� problem which deter-
mines the applicability of the equation-free methods.

In this work, diffusion map computations were based on
data collected from a single long transient that was consid-
ered representative of the entire relevant portion of the �six-
dimensional� phase space. In more realistic problems such
long simulations will be no longer possible; yet local simu-
lation bursts, observed on locally valid diffusion map coor-
dinates, can be used to guide the efficient exploration of
phase space. Local smoothness in these coordinates allows
us to use them in protocols such as umbrella sampling33,35 to
“differentially locally extend” effective free energy surfaces.
For example, “reverse coarse” integration described in Refs.
36 and 37 provides computational protocols for microscopic/
stochastic simulators to track backward in time behavior, ac-
celerating escape from free energy minima and allowing
identification of saddle-type coarse-grained “transition
states”. Design of �computational� experiments for obtaining
macroscopic information is thus complemented by the design
of �computational� experiments to extend good low-
dimensional data representations: both the coarse-grained co-
ordinates and the operations we perform on them can be
obtained through appropriately designed fine scale simula-
tion bursts.

In this paper the connection between diffusion maps and
coarse-grained computation operated only in one direction:
diffusion map coordinates influenced the subsequent design
of numerical experiments. An important current research
goal is to establish the “reverse connection:” the on-line
extension/modification of diffusion map coordinates towards
sampling important, unexplored regions of phase space.
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FIG. 7. �Color� Left panel: Swiss roll data set in R3.
Data points lie along a two-dimensional manifold. Data
points are colored by their z-coordinate value �ordering
of data points passed to diffusion map routine is ran-
dom�. Right panel: plot of �1�X�i�� �corresponding to
eigenvalue �1� against �2�X�i�� �corresponding to ei-
genvalue �2� for points in the data set �same coloring
scheme�. The diffusion map “unrolls” the two-
dimensional manifold.
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APPENDIX A: DIFFUSION MAPS

The following discussion is largely adapted from Refs.
11 and 27. We present a criterion for dimensionality reduc-
tion and show how it leads to the diffusion map method.

Suppose we have M points X�i��RN, i=1, . . . ,M, and
we define the matrix W by Eq. �4.5�. Given a mapping
f : �1, . . . ,M�→Rn, we define the functional L by the formula

L�f� = �
i,j

�f�i� − f�j��2Wij . �A1�

We see that L�f� is always non-negative. Moreover, Wij is
close to �far from� 1 for vectors X�i� and X�j� which are near
�far� from each other. For a dimensionality reduction func-
tion f to be useful, we must make sure that nearby points X�i�

and X�j� in RN are mapped to nearby points f�i� and f�j� in
Rn. To find such a mapping, one can solve the following
minimization problem:

arg min
f�F

L�f� where F = �f:FTDF = In,FTD1 = 0� , �A2�

where F is the M �n matrix with row vectors f�i�, D is the
M �M diagonal matrix with entries Dii=� jWij, i=1, . . . ,M,
In is the n�n identity matrix, 1 is a vector of M ones, and 0
a vector of n zeros. The first constraint removes the arbitrary
scaling factor, while the second constraint ensures that we do
not map all M points X�i� to the same number. Since Eq. �A1�
can be rewritten as

L�f� = �
i,j=1

M

�f�i� − f�j��2Wij = tr�FT�D − W�F� , �A3�

the solution F is given by the matrix of eigenvectors corre-
sponding to the lowest eigenvalues of the matrix

D−1�D − W� = IM − K �A4�

or equivalently by the largest eigenvalues of K. By the non-
negativity of the functional L�f� it follows that the eigenval-
ues of IM −K are all non-negative, or that all eigenvalues of
K are smaller than or equal to 1. The eigenvector corre-
sponding to the eigenvalue �0=1 is the vector 1. Ordering
the remaining eigenvalues in decreasing order we see that the
n-dimensional representation of N-dimensional data points,
via the minimization of Eq. �A2�, is the diffusion map �4.12�.

We note that our M points and the matrix Wij can be also
viewed as a weighted full graph with M vertices, where the
weight associated with an edge between points i and j is
equal to Wij. Then the previous analysis can be reformulated
in terms of standard spectral graph theory.27,38 More pre-
cisely, it was shown in Ref. 18 that this construction leads to
the classical normalized graph Laplacian for 
=0 in Eq.
�4.5�. If 
=1, then the construction gives the Laplace-
Beltrami operator on the graph. Finally, if the data are pro-
duced by a stochastic �Langevin� equation, 
=1/2 provides
a consistent method to approximate the eigenvalues and
eigenvectors of the underlying stochastic problem.

FIG. 8. �Color� Two-well potential with two connecting pathways between
minima.

FIG. 9. �Color� Left panel: subsampled data set generated by Monte Carlo simulation using the two-well potential �data points colored by energy according
to color bar�. Right panel: data set diffusion map �same coloring scheme� with top eigenvalues indicated in inset.
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APPENDIX B: SIMPLE ILLUSTRATIVE EXAMPLES

We include a brief illustration of the application of the
diffusion map approach to the well known three-dimensional
“Swiss roll” data set39–41 �shown in the left panel of Fig. 7�
where data points lie along a two-dimensional manifold. For
this data set X= �x ,y ,z�; to compute the diffusion map we
use 
=1, and �=2 in Eq. �4.1�. Figure 7 �right panel� plots
these data points in terms of their components in the top two
significant eigenvectors ��1�X�i�� and �2�X�i��� of the matrix
K for this data set; it shows the “unrolled” two-dimensional
manifold detected by the diffusion map algorithm. The same
result is obtained irrespective of the ordering �or orientation�
of the data set used to compute the pairwise similarity ma-
trix.

As a second illustration, Fig. 8 shows the potential
E�x ,y�=x4 /8−x3+2x2+y4 /5+6 exp�−2�x−2�2−10y2� which
has two minima connected by two paths. A subsampling of
the data set generated by Monte Carlo simulation using this
potential is shown in Fig. 9 �left panel� with the correspond-
ing diffusion map shown in the right panel of the figure. For
this data set X= �x ,y�; to compute the diffusion map we use

=0, and �=0.5 in Eq. �4.1�. Figure 9 �right panel� shows
that points close to the bottom of the wells are mapped to
tight clusters in the diffusion map, with a clear distinction
between data points on each of the two transition pathways
between the minima.
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