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ABSTRACT Signaling pathways respond to stimuli in a variety of ways, depending on the magnitude of the input and the
physiological status of the cell. For instance, yeast can respond to pheromone stimulation in either a binary or graded fashion.
Here we present single cell transcription data indicating that a transient binary response in which all cells eventually become
activated is typical. Stochastic modeling of the biochemical steps that regulate activation of the mitogen-activated protein kinase
Fus3 reveals that this portion of the pathway can account for the graded-to-binary conversion. To test the validity of the model,
genetic approaches are used to alter expression levels of Msg5 and Ste7, two of the proteins that negatively and positively
regulate Fus3, respectively. Single cell measurements of the genetically altered cells are shown to be consistent with
predictions of the model. Finally, computational modeling is used to investigate the effects of protein turnover on the response of
the pathway. We demonstrate that the inclusion of protein turnover can lead to sustained oscillations of protein concentrations
in the absence of feedback regulation. Thus, protein turnover can profoundly influence the output of a signaling pathway.

INTRODUCTION

The pheromone response of yeast is one of the best-

characterized signaling pathways (1). Much is known about

the proteins that transmit the pheromone signal, as well as

about the mechanisms by which events at the cell surface are

linked to subsequent biochemical changes in the cytoplasm

and nucleus. A diagram of the pathway is given in Fig. 1 A.
Activation of the pathway is initiated by binding of mating

pheromones to specific cell surface receptors, and ends with

the fusion of a- and a-haploid cell types to form an a/a-
diploid (mating). In the a-cell type, signaling is initiated

by binding of the pheromone a-factor to its receptor Ste2.

Receptor activation in turn leads to the exchange of GDP for

GTP on the G-protein a-subunit Gpa1, and subsequent dis-

sociation from the G-protein bg-subunit dimer composed of

Ste4 and Ste18. The signal is then transmitted and amplified

through effector proteins that bind to Gbg. A major target of

the Gbg-subunits is a cascade of four protein kinases that

begins with Ste20 and ends with the mitogen-activated pro-

tein kinase (MAPK) Fus3. Ste20 phosphorylates and acti-

vates Ste11, which phosphorylates and activates Ste7, which

in turn phosphorylates and activates the MAPK Fus3 (on

Tyr-182 and Thr-180). Fus3 has a number of substrates

including the transcription factor Ste12, which is responsible

for induction of genes required for mating. Inactivation of

signaling requires that Fus3 is dephosphorylated on both Tyr

and Thr. Both sites are recognized by the dual-specificity

phosphatase Msg5. Tyr is also dephosphorylated by at least

two other phosphatases, Ptp2 and Ptp3. In the absence of

Fus3, however, a closely related MAP kinase Kss1 can carry

out most of the functions of Fus3 (1).

Most of the components of the pheromone response path-

way have been identified genetically, through the isolation of

mating-defective or sterile gene mutations. Further genetic,

biochemical, and molecular biological analysis of the path-

way revealed the order of each signaling event, and has

established many basic principles of G-protein and MAPK

signaling relevant to all eukaryotes (2). Having now deter-

mined the essential components and events in G-protein-

coupled receptor signaling, an emerging goal is to develop

mathematical models that describe their behavior over time.

Cell signaling pathways can vary their response to a

stimulus in a variety of different ways. At the receptor level,

pathway activation is determined by the number of liganded

receptors and therefore is proportional to the concentration of

the input stimulus. This graded binding event can propagate

through the pathway and produce a graded transcriptional

response that is proportional to the input signal. However,

many pathways convert a graded input instead into a binary

transcriptional response (3–5). A binary response refers to an

all-or-none situation in which the probability of an individual

cell responding to a stimulus is proportional to the strength of

the signal. Binary responses are often attributed to multiple

steady states that arise from feedback regulation (4,6). How-

ever, graded and binary outputs are not the only time-depen-

dent responses of which signaling pathways are capable.

Sustained oscillations and more complicated dynamics are

also possible.

In yeast, pheromone signaling can produce either a graded

or binary transcriptional response depending on the dose

of pheromone, the time of treatment, and the intracellular

activation event being measured. A binary response may be

appropriate in some physiological situations but not in
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others. For instance in yeast, pheromones initiate a process

leading to mating, an inherently irreversible process where

an all-or-none decision is appropriate. Binary outputs are

also appropriate during cell division, cell differentiation, and

cellular apoptosis. Thus, establishing the mechanisms by

which the graded-to-binary conversion is accomplished is a

fundamental problem in cell biology. Here we seek to iden-

tify components of the pheromone response pathway that

mediate the graded-to-binary conversion and to uncover the

mechanism by which this conversion is accomplished. We

employ an approach that combines experimental analysis

with computational modeling. Data from fluorescence-based

transcriptional induction assays in single cells are used as the

experimental basis for a stochastic model of the biochemical

steps that regulate MAPK activation. The mathematical

model is motivated by the theoretical work of Markevich

et al. (7) on multisite phosphorylation of protein kinases.

Computational analysis is used to validate the model and

generate testable hypotheses, which are in turn confirmed

experimentally.

Our stochastic modeling reveals that small changes in

protein abundances can have large effects on MAPK acti-

vation. Additionally, data on protein turnover suggests that

protein degradation plays an important role in regulating the

pheromone pathway. Pheromone-stimulated degradation has

been documented previously for the receptor (Ste2) (8), a

regulator of G-protein signaling (Sst2) (9), components of

the effector kinase cascade (Ste11, Ste7) (9–11), and the

transcription factor (Ste12) (12). However, the functional

consequences of accelerating protein turnover have not been

well characterized. These observations motivate extending

the computational model to include protein turnover. We

demonstrate that the qualitative behavior of the pathway

depends on the mechanism through which protein degrada-

tion occurs. In particular, we show that protein degradation

can generate sustained oscillations in protein concentrations.

Finally, stochastic modeling is used to demonstrate that

biochemical fluctuations increase the parameter range over

which the oscillations occur, and that the oscillations can

generate an apparent binary response in flow cytometry

experiments.

MATERIALS AND METHODS

Model description

In this study, we focus on the MAPK portion of the pheromone response

pathway. The biochemical steps involved in the regulation of the MAP

kinase Fus3 are shown in Fig. 1 B. Transmission of the intracellular signal

involves phosphorylation of Fus3 by Ste7. Pathway activation can also occur

via the MAPK Kss1. However, in this study we do not distinguish between

Fus3 and Kss1. Ste7 is a dual-specificity kinase that modifies Fus3 at Thr-

180 and Tyr-182 sites and stimulates its catalytic activity. Msg5 is a dual-

specificity phosphatase that inactivates Fus3. Ptp2 and Ptp3 are tyrosine

phosphatases that also inactivate Fus3. For simplicity, we do not distinguish

between these three proteins. As shown in Fig. 1 B, we assume a distributive

kinetic mechanism for the dual phosphorylation and dephosphorylation

reactions (7,13). A distributive mechanism refers to one in which the kinase

and phosphatase release the monophosphorylated substrate intermediate and

a second interaction is required to generate the final product. We use [KK],

[K], and [P] to denote the concentrations of Ste7 (MAPK kinase), Fus3

(MAPK), and Msg5 (phosphatase), respectively. [Kp] and [Kpp] denote the

concentrations of the singly phosphorylated and doubly phosphorylated

forms of Fus3, respectively. Protein/protein complexes are denoted with a

dot (�). For example, [K�KK] denotes the concentration of the Fus3/Ste7

complex. The biochemical reactions used in the stochastic and rate equation

models are given in Appendix A. Where available, we use experimentally

measured values for the model parameters. For the parameters that have not

been measured, we use biologically realistic values. A summary of the

model parameters and the values used in the simulations is given in Table 1.

Computational methods

Stochastic and deterministic modeling

Biochemical reactions are inherently random processes. The Gillespie algo-

rithm can be used to generate single realizations of biochemical networks

(14). We have implemented an efficient version of the Gillespie algorithm in

our software package BioNetS (15). Most of the stochastic modeling was

done using BioNetS. The BioNetS scripts used to generate the results are

available upon request.

FIGURE 1 (A) The pheromone signaling pathway. Shown are the

pheromone receptor (Ste2), G-protein a-, b-, and g-subunits (Gpa1, Ste4,
Ste18), the Regulator of G-protein signaling (RGS, Sst2) which accelerates

Gpa1 GTPase activity, effector kinases including the MAPKKK kinase

(Ste20), MAPKK kinase (Ste11), MAPK kinase (Ste7), MAP kinases (Kss1,

Fus3), and nuclear transcription factor (Ste12). Three of the kinases bind to a

kinase scaffold protein (Ste5). Several other effectors and regulatory

components are not shown, for clarity. Pheromone-dependent transcriptional

induction of SST2 represents a negative feedback loop. (B) A schematic

diagram of Fus3 regulation. Fus3 activation and deactivation are assumed to

occur through a distributive kinetic mechanism in which two collisions with

Ste7 (MAPK kinase) and Msg5 (MAPK phosphatase) are required. The

MAPK Kss1 also activates the pheromone response pathway, and the

phosphatases Ptp2 and Ptp3 also inactivate kinase activity. However, to

simplify the models the kinase and phosphatase activities of these proteins

are not distinguished from those of Fus3 and Msg5.
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When protein abundances are sufficiently large, the law of mass action

can be used to construct rate equations for the concentrations of the various

chemical species. Here we present a very simple example to illustrate the

connection between the stochastic models and the rate equations. Consider

the following two biochemical reactions:

BE*
gK

dK

K; (1)

K1KKE*
k1

k�
K � KK: (2)

When Eq. 1 proceeds in the forward direction, a new molecule of Fus3 (K) is

synthesized. The reverse reaction represents the degradation of a single Fus3

molecule. Eq. 2 represents the binding and dissociation of a Fus3 molecule

(K) with a Ste7 molecule (KK). In the stochastic models the system is

described in terms of molecule numbers. Therefore the rate constants, dk, gk,

k1, and k�, all have units of inverse time. The second-order rate constant k1
is inversely proportional to the effective volume V. That is, k1;k91=V,
where the constant k91 is independent of the volume and has units of

[concentration]�1[time]�1. The effective volume might be that of a yeast cell

or smaller if the proteins are spatially restricted in their localization. Let

NK(t), NKK(t), and NK�KK(t) denote the number of molecules of the proteins

Fus3, Ste7, and the complex Fus3�Ste7, respectively, at time t. Note that in

the example given by Eqs. 1 and 2, the total number of Ste7 molecules,

NKK1NK�KK, remains constant in time and that Fus3 cannot be degraded

when it is in a complex with Ste7. Concentrations are formed by dividing the

number of molecules by the volume. To convert to molar concentration, the

molecule number also must be divided by Avogadro’s number NA. For

example, [K] ¼ NK/(V NA) is the Fus3 concentration. Using the law of mass

action, we can write rate equations for the concentrations:

d½K�
dt

¼ gK

VNA

� dK½K�1 k�½K � KK� � k1 VNA½K�½KK�; (3)

d½KK�
dt

¼ k�½K � KK� � k1 VNA½K�½KK�: (4)

The conservation of total Ste7 number can now be written as d/dt([KK] 1

[K�KK]) ¼ 0. Therefore, once the total Ste7 concentration, [KK]T, has been

specified, [K�KK] can be found from the relation [K�KK] ¼ [KK]T – [KK].

Equations 3 and 4 represent a macroscopic description of the process,

because they ignore biochemical fluctuations. The macroscopic limit is

reached as the molecule numbers and volume become large with their ratios

(concentrations) remaining finite. Fluctuations in concentration typically

scale like 1/V1/2, so that Eqs. 3 and 4 are valid in limit of large volume.When

investigating the range of validity of these equations through comparisons

with stochastic simulations, the synthesis rates must be scaled with the

volume, whereas the second-order rate constants must scale inversely with

volume. This scaling ensures that Eqs. 3 and 4 remain unchanged as the

volume is increased. The numerical simulations of the rate equations were

carried out in MatLab (The MathWorks, Natick, MA) and the bifurcation

analysis was done in MatLab and XPPAUT (16).

Protein degradation and synthesis

We investigate several different models of protein degradation and

synthesis.

Case I—conservation of enzyme concentrations. The simplest model

assumes that proteins are neither degraded nor synthesized. In this case the

total concentration of all three enzymes is constant in time. That is,

d½K�T
dt

¼ d

dt
ð½K�1 ½Kp�1 ½Kpp�1 ½K � KK�1 ½Kp � KK�

1 ½Kp � P�1 ½ðKp � PÞ�1 ½Kpp � P�1 ½K � P�Þ ¼ 0;

(5)

TABLE 1 Model parameters and the values used in the simulations

Parameter Description Value (Cases I, II, III) Reference

k1 Association rate constant K/KK binding 0.00275, 0.0011, 0.0198 (7)

k�1 Dissociation rate constant for K�KK 2.5, 1, 1 (7)

k2 kcat for first phosphorylation event 0.025, 0.01,0.01 (7)

k3 Association rate constant for Kp /KK binding 0.00445, 0.00178, 0.03204 (7)

k�3 Dissociation rate constant for Kp�KK 2.5, 1, 1 (7)

k4 kcat for second phosphorylation event 37.5, 15, 15 (7)

h1 Association rate constant Kpp/P binding 0.00625, 0.0025, 0.045 (7)

h�1 Dissociation rate constant for Kpp�P 2.5, 1, 1 (7)

h2 Rate constant for phosphate release of the phosphotyrosine 0.23, 0.092, 0.092 (7)

h3 Dissociation rate constant for Kp�P 2.5, 1, 1 (7)

h�3 Association rate constant for Kp/P 0.0014, 5.6e-4, 0.0099 (7)

h4 Association rate constant for Kp/P binding 0.0014, 5.6e-4, 0.0099 (7)

h�4 Dissociation rate constant for (Kp�P) 2.5, 1,1 (7)

h5 Rate constant for phosphate release of the phosphothreonine 1.25, 0.5,0.5 (7)

h6 Dissociation rate constant for K�P 0.215, 0.086, 0.086 (7)

h�6 Association rate constant for K/P binding 1.525e-4, 6.1e-5, 0.099 (7)

gk Synthesis rate of Fus3 N/A, 0.9, 0.095 Determined from abundance and degradation rate

gkk Synthesis rate of Ste7 N/A, 0.33504, 0.016 Determined from abundance and degradation rate

gp Synthesis rate of Msg5 N/A, 0.828, 0.023 Determined from abundance and degradation rate

dk Degradation rate of Fus3 N/A,1e-4, 1e-4 Experiment

dkk Degradation rate of Ste7 N/A, 3.2e-4, 3.2e-4 (9)

dp Degradation rate of Msg5 N/A, 4.6e-4, 4.6e-4 Experiment

NKT Molecular abundance of Fus3 9000, N/A, N/A (18)

NKKT Molecular abundance of Ste7 900, N/A, N/A (18)

NPT Molecular abundance of Msg5 1800, N/A, N/A (7,18,22)

All rate constants have units of s�1. K denotes Fus3 (MAPK), KK denotes Ste7 (MAPKK), and P denotes Msg5 (phosphatase).
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d½KK�T
dt

¼ d

dt
ð½KK�1 ½K � KK�1 ½Kp � KK�Þ ¼ 0; (6)

d½P�T
dt

¼ d

dt
ð½P�1 ½Kp � P�1 ½Kpp � P�1 ½ðKp � PÞ�

1 ½K � P�Þ ¼ 0;

(7)

where the subscript T stands for total. The chemical species (Kp�P) in Eq. 5

results from the assumption that the phosphotyrosine is dephosphorylated

first (7,17). That is, the chemical species (Kp�P) indicates the phosphatase

attacking the phosphothreonine, whereas Kp�P is the product after

phosphotyrosine has been dephosphorylated. The assumption of conserved

enzyme concentrations is generally justified by the observation that protein

synthesis and degradation occur on timescales that are considerably longer

than phosphorylation/dephosphorylation reactions. However, it was recently

shown for the pheromone response pathway that the degradation rate of Ste7

is large and increases upon exposure to pheromone (9). Below we present

experimental results that show the degradation rate of Msg5 is also large, and

slightly increases with pheromone stimulation. The fact that steady-state

levels of these proteins do not change appreciably after exposure to pher-

omone implies that protein synthesis must also increase (data not shown).

There are many possibilities for how to incorporate protein degradation into

the model. We will investigate two cases that illustrate that the dynamics of

the system depends critically on this choice.

Case II—no protection from degradation. In addition to Eq. 1 for Fus3,

the reactions for the synthesis and degradation of free Ste7 and Msg5 are

BE*
gKK

dKK

½KK�; (8)

BE*
gP

dP

½P�: (9)

In this model, we also allow proteins to be degraded regardless of their

chemical state. That is, all reactions of the form

½KK� �!dKK B; (10)

½K � KK� �!dKK ½K�; (11)

½K � KK� �!dK ½KK�; (12)

are included. The total concentration of each protein species is no longer

conserved, and Eqs. 5–7 become

d½K�T
dt

¼ gK � dK½K�T; (13)

d½KK�T
dt

¼ gKK � dKK½KK�T; (14)

d½P�T
dt

¼ gP � dP½P�T: (15)

At steady state, the synthesis and degradation rates balance, and the steady-

state values of the total protein concentrations are ½K�ssT ¼ gK=dK; ½KK�ssT ¼
gKK=dKK; and ½P�ssT ¼ gP=dP; where the superscript ss denotes steady state.

Case III—degradation of free protein only. In this scenario, only the free

inactive form of the protein is degraded. That is, protein degradation only

occurs via the reactions given in Eqs. 1, 8, and 9, so that proteins are

protected against degradation when they are in a protein-protein complex or

phosphorylated. In this case, Eqs. 13–15 become

d½K�T
dt

¼ gK � dK½K�; (16)

d½KK�T
dt

¼ gKK � dKK½KK�; (17)

d½P�T
dt

¼ gP � dP½P�: (18)

At steady state, the free enzyme concentrations are given by [K]ss ¼ gK/dK,

[KK]ss ¼ gKK/dKK, and [P]ss ¼ gP/dP. Below we show that this model can

produce sustained oscillations in concentration levels. These oscillations persist

if the phosphorylated species of Fus3 are not protected from degradation.

For simplicity, we will focus on the three cases described here. However,

many other possibilities exist. For example, it is possible that degradation

rates are different for free proteins versus those in complexes or those that

are phosphorylated.

Experimental methods

Strains and plasmids

The S. cerevisiae strains used in this study were BY4741 (MATa leu2D

met15D his3D ura3D), BY4741-derived strains containing the tandem-

affinity purification (TAP) tag fused to FUS3 or MSG5 (18), or BY4741-

derived deletion mutants lacking SST2 orMSG5 (Research Genetics, Huntsville,

AL). The single copy SST2 expression plasmid pRS316-SST2 (2X SST2)

was described previously (19). The single-copy MSG5 plasmid was con-

structed by PCR amplification of the MSG5 gene, using flanking PCR

primers that anneal;600-bp upstream (GAGGATCCGACGATGATGAC-

GATGATGATG) or ;600-bp downstream (GAGGATCCTGCAGCAA-

CACCTTTGG) of the open reading frame. The PCR product was then

subcloned into pRS316 (American Type Culture Collection, Manassas, VA)

by BamHI digestion and ligation to yield pRS316-MSG5. The STE7 over-

expression plasmid was constructed by PCR amplification (forward primer:

ATGTTTCAACGAAAGACTTTA; reverse primer: AATGGGTTGATCT-

TTCCGATTG) of the STE7 gene and then ligated into pYES2.1/V5-His-

TOPO (Invitrogen, Carlsbad, CA) to yield pGAL-STE7. The FUS1-green

fluorescent protein (GFP) reporter (containing destabilized PEST-domain

containing variant of GFP) was subcloned from pDS30 (20) into pRS303

(American Type Culture Collection) using EcoRI and NotI, and then

linearized by XcmI to drive genomic integration at the FUS1 locus.

Protein degradation time course and immunoblot detection

Cells were treated with 3 mM a-factor for indicated times. To monitor the

degradation of proteins over time, midlog cell cultures were treated with

cycloheximide (10 mg/ml in 0.1% ethanol, final concentrations) for up to 90

min before harvesting. The cell growth and treatment was stopped by the

addition of 10 mM NaN3 and transfer to an ice bath. Cells were washed and

resuspended directly in boiling SDS-PAGE sample buffer for 10 min,

disrupted by glass-bead homogenization, and clarified by microcentrifuga-

tion. After SDS-PAGE and transfer to nitrocellulose, the membrane was

probed with antibodies to Sst2 or protein A (Sigma-Aldrich, St. Louis, MO).

Immunoreactive species were visualized by enhanced chemiluminescence

detection (Pierce Biotechnology, Rockford, IL) of horseradish peroxidase-

conjugated anti-rabbit IgG (Bio-Rad, Hercules, CA).

Fluorescence-activated cell sorting

The measurement of GFP in individual yeast cells was described previously

(19,21). Briefly, cells containing the integrated FUS1-GFP reporter were treated

with indicated concentrations ofa-factor for indicated times. The cell growth and

a-factor treatment were stopped by the addition of 10 mM NaN3 and transfer to

an ice bath. The resulting fluorescence in each cell was monitored by cell sorting.

RESULTS

The pheromone response can be binary or graded

Transcriptional induction can occur in a graded or binary

fashion (5). A binary response can exist transiently with all

1964 Wang et al.
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the cells eventually becoming activated or can be permanent

with a persistent subpopulation of cells in the inactivate state.

To investigate the temporal response of the pheromone path-

way, we conducted single cell fluorescence measurements of

transcription. Fig. 2 presents flow cytometry data using the

destabilized green fluorescent protein (GFP) as a reporter for

the transcription induction activity of individual cells after

exposure to pheromone. The distributions shown as solid

lines in the first column of Fig. 2 A are results at different

time-points for wild-type cells exposed to 1 mM pheromone.

The cells display a transient binary response with all cells

eventually responding after 120 min. The distributions shown

as solid lines in the top row of Fig. 2 B are flow cytometry

data for wild-type cells at various pheromone doses taken

60 min after exposure to pheromone. At this time-point, the

binary response is most pronounced at 1 mM of pheromone.

Sst2 is a regulator of G-protein signaling that accelerates

G-protein-catalyzed GTP hydrolysis, and in this way inhibits

pathway activation. Sst2 transcription and synthesis is in-

duced by pheromone producing a negative feedback loop.

We recently demonstrated that Sst2 degradation is also in-

creased upon exposure to pheromone (19). Computational

modeling revealed that this positive feedback mechanism

can counteract the negative effects of Sst2 and generate a

binary response. A prediction of the computational model is

that the deletion of Sst2 should remove the transient binary

response resulting in a graded temporal response. To test this

possibility we conducted single cell fluorescence measure-

ments on cells lacking Sst2 (sst2D). These cells exhibited a

graded response for all doses and time-points tested. The

distributions shown as dotted lines in Fig. 2, A and B, are a
subset of these results. Again the columns of Fig. 2 A are the

results for different time-points using a pheromone concen-

tration of 1 mM and the rows of Fig. 2 B are the results for

different doses at 60 min after exposure. Because the sst2D
mutant always produced a grade response, we have included

these results on all the plots as a reference. To further inves-

tigate how Sst2 attenuates the pheromone response, we per-

formed fluorescence measurement on cells containing an extra

copy of the SST2 gene (2XSst2). The results are shown in the

second column of Fig. 2 A and second row of Fig. 2 B. These
data indicate that the 2XSst2 strain also exhibits a transient

binary response and at pheromone doses of 0.3, 1, and 3 mM,

this response lags that of wild-type cells (compare column
1 with 2 in Fig. 2 A and row 1 with 2 in Fig. 2 B). Fig. 2 B
also indicates that the binary response is more pronounced at

higher pheromone concentrations than in wild-type cells.

The results presented in Fig. 2 demonstrate that the

graded-to-binary conversion is regulated by the G-protein;

however, these data do not establish that the conversion is

mediated by the G-protein itself or by another downstream

signaling component. Previous results suggest that it is the

MAPK that mediates the switch. Evidence for this comes

from the work of Poritz et al. (21). Using sst2Dmutants, they

demonstrated over a range of pheromone concentrations that

inhibition of the pathway downstream of the G-protein

converts a graded response to a binary one. Their measure-

ments were made 4–6 h after pheromone treatment, indicat-

ing that the binary response is permanent. This suggests that

inhibiting the pathway downstream of the G-protein gener-

ates bistability. Recent theoretical work of Markevich et al.

(7) also suggests that regulation of MAPK is sufficient to

generate bistability, and thus might account for the graded-

to-binary conversion observed by Poritz et al. (21). To test if

regulation of MAPK is also sufficient to explain the temporal

response of the pathway described here, we constructed a

stochastic model of Fus3 activation. Stochastic models treat

biochemical reactions as random processes and therefore pro-

vide information about the effects of concentration fluctu-

ations on the response of the pathway.

Stochastic modeling, bistability, and the transient
binary response

A diagram of the MAPK portion of the pheromone response

pathway is shown in Fig. 1 B. Ste7 is a dual-specificity ki-

nase that phosphorylates Fus3 at both threonine and tyrosine

residues and stimulates its catalytic activity. Msg5 is a dual-

specificity phosphatase that inactivates Fus3. As shown in

Fig. 1 B, we assume a distributive kinetic mechanism for the

dual phosphorylation and dephosphorylation reactions. That

is, two collisions between Fus3 and Ste7 are required for the

dual phosphorylation of Fus3. Evidence for a distributive

phosphorylation mechanism comes from work on MAPKK-

1 phosphorylation of p42 MAPK in Xenopus (13), where it

was shown that during the phosphorylation process the

amount of monophosphorylated MAPK exceeded the amount

of dually phosphorylated MAPK. This result is only possible

if two collisions between the MAPKK and MAPK are

required for full phosphorylation. We also assume that two col-

lisions between Fus3 and Msg5 are required to convert the

doubly phosphorylated Fus3 back to the unphosphorylated

state (7). The biochemical reactions used in the computa-

tional model are given in Appendix A. Where available, we

use experimentally measured values for the model param-

eters. For the parameters that have not been measured, we

use biologically realistic values. A summary of the model

parameters and the values used in the simulations is given in

Table 1.

A surprising property of the reaction scheme illustrated

in Fig. 1 B is that the system can exhibit bistability in the

absence of feedback regulation (7). Bistability refers to the

situation in which the system possesses two stable steady

states and is generally attributed to feedback regulation.

Fig. 3 shows a plot of the steady-state values of the doubly-

phosphorylated (active) Fus3 concentration [Kpp]ss as a

function of the total (phosphorylated and unphosphorylated)

Ste7 concentration [KK]T. This type of graph, often referred

to as a bifurcation diagram, illustrates where qualitative changes

to the steady-state values of [Kpp]ss occur. If an effective cell

Computational Analysis of MAPK 1965
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FIGURE 2 Pheromone-dependent transcriptional induction was measured for four different strains of cells: wild-type cells (WT), an sst2 gene deletion

mutant (sst2D), cells transformed with a single copy plasmid (pRS316) containing genomic clone of SST2 (2XSST2) and sst2D containing a single copy

plasmid (pRS316) containing genomic clone of MSG5 (2XMSG5). An integrated pheromone-responsive FUS1 promoter-GFP reporter was used to monitor

expression. Cells were then treated with various concentrations of a-factor (0.3, 1, 3, and 10 mM) and the resulting fluorescence in each cell was monitored by

cell sorting at 45, 60, 75, 90, and 120 min. All experiments were repeated at least twice with similar results. Fluorescence measurements are reported on a log

scale (x axis). (A) The rows in this figure correspond to fluorescence measurements made at different time-points after treatment with 1 mM of pheromone. In

each column the distributions shown as dotted lines are data for the sst2Dmutant that responds in a graded fashion. In contrast the distributions shown as solid

lines are for the WT (first column), 2XSST (second column) and 2XMSG5 in sst2D (third column) strains and show a transient binary response. The shaded

dashed line in the first two columns is a guide for the eye to help illustrate the delayed response of the 2XSST2 strain relative to the WT case. (B) The columns

in this figure correspond to fluorescence measurements made at different pheromone concentrations 60 min after exposure. Again the distributions shown as

dotted lines are data for the sst2D mutant and the distributions shown as solid lines are for the WT (first row), 2XSST2 (second row), and 2XMSG5 in sst2D

(third row) strains. The delayed response of the 2XSST2 strain can again be observed for a-factor concentrations of 0.3, 1, and 3 mM.
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volume of 30 mm3 is assumed, then the concentrations of

Fus3, Ste7, and Msg5 used to generate Fig. 3 correspond to

total molecular abundances of 9000, 700;1200, and 1800,

respectively, which are similar to experimentally determined

values (18,22). The solid portions of the curve indicate stable

steady states and the dashed portion indicates unstable steady

states. As is typical of bistable systems, in the bistable region

there exist three steady states for each value of the total Ste7

concentration [KK]T, two stable and one unstable. Because

the unstable steady state is unstable against all perturbations,

it is not experimentally observable.

The effects of random fluctuations in protein concentra-

tions can be investigated by considering a stochastic model

of the system. Concentration fluctuations enable the system

to undergo random transitions between the two stable states

in the bistable region. Therefore, a histogram of protein con-

centration taken from a population of cells exhibiting bi-

stability would be bimodal with a subpopulation of cells in

an activated state and another subpopulation in the inactive

state. Equivalently, histograms generated from a sufficiently

long time-series from a single cell would also be bimodal.

However, stochastic modeling revealed that when realistic

protein abundances are used, the average time for sponta-

neous transitions between stable steady states to occur is

much longer than all biologically relevant timescales. This is

illustrated in Fig. 4. This figure shows simulated time-series

of the activated Fus3 molecule number for cases near the

bifurcation point at 58.4 nM (1051 Ste7 molecules/cell).

Proceeding from top to bottom, each panel of this figure

corresponds to the addition of one molecule of Ste7. In each

panel, two different sets of initial conditions were used; one

set was chosen to be near the steady state corresponding to

low levels of activated Fus3 and the other set corresponds to

high levels of activated Fus3. In each graph only a single

time-series started near the high state is shown, because

FIGURE 2 Continued

FIGURE 3 A bifurcation diagram illustrating bistability in the reactions

shown in Fig. 1 B. The steady-state values of the activated Fus3 concen-

tration [Kpp]ss are plotted as a function of the total Ste7 concentration [KK]T.

The solid portion of the curve indicates stable steady states and the dashed

portion unstable steady states. The bistable region occurs between 44.6 nM

and 58.4 nM. Assuming a cell volume of 30 mm3, this corresponds to 802

and 1051 Ste7 molecules, respectively. The values of the model parameters

used to produce this plot are given in Table 1.
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multiple runs did not generate any transitions to the low

state. This indicates that the activated state is very stable

against fluctuations in protein concentration. Each graph in

Fig. 4 shows 10 time-series started near the low state. The

top panel corresponds to a case in which two stable steady

states exist, and the transitions from low to high occur

infrequently. The bottom panel corresponds to a case with a

unique steady state. In this case, the system transitions from

low to high levels of activated Fus3 relatively quickly. That

is, the average transition time is noticeably shorter even

though the top and bottom panels only differ by two Ste7

molecules. Although this sensitivity to molecular abundance

is surprising and of theoretical interest, it seems unlikely to

have biological significance and does not underlie any of the

results presented here. Note, however, that there is consid-

erable variability in the transition time even when a single

steady state exists (Fig. 4, middle and bottom). This vari-

ability continues for Ste7 concentrations well beyond the

region of bistability and is sufficient to generate a binary

response. The model shows a similar sensitivity on the deac-

tivation time to Msg5 levels (data not shown).

The solid lines shown in the bottom and middle panels of

Fig. 4 are time-series from the rate equations for the protein

concentrations (see Materials and Methods and Appendix

A). Notice that these trajectories show a long time delay

before the system moves from the low to high state. This

time lag is referred to as a bottleneck (23). The bottleneck

occurs for values of the total Ste7 concentration just beyond

the bistable region shown in Fig. 3, because at low activated

Fus3 concentrations Fus3 phosphorylation and dephospho-

rylation rates nearly balance. However, the dephosphoryla-

tion rate is slightly smaller and not able to maintain Fus3 in a

deactivated state.

The time delay in Fus3 activation produced by the model

might underlie the delay in Sst2 induction observed exper-

imentally in cells overexpressing Sst2 (19). We next inves-

tigated if a transient binary response could be generated even

for values of the total Ste7 concentration that do not generate

bistability. In Fig. 5, we present results from stochastic

simulations using a total Ste7 molecule number of 1062. For

this value, the system is still close enough to the transition to

bistability so that the rate equations produce a time lag (black
solid line, Fig. 5 A). To simulate pathway activation the

system was started near the low activated Fus3 steady state.

Next 1250 sample paths were generated, 10 of which are

shown in Fig. 5 A. The dashed line shown in this figure is the
result of averaging the sample paths. This curve agrees fairly

well with the rate equation result. However, the fluctuations

cause the response to become less sharp. Next the sample

paths were used to generate histograms of the activated Fus3

at several different times. The results are shown in Fig. 5 B.
As can be seen, the system exhibits a transient binary

response. That is, at intermediate times the distribution of

activated Fus3 is bimodal, whereas at long times the

distribution is centered at the high state, indicating that all

FIGURE 4 Time-series of the number of activated Fus3 molecules from

stochastic simulations. Moving down the column corresponds to adding one

molecule of Ste7 to the system. The plots illustrate pathway activation as the

system moves out of the bistable regime through the bifurcation at 58.4 nM

of Ste7 (1051 molecules/cell). Each graph shows 10 time-series started with

identical initial conditions near the low state and one time-series started near

the high state. As can be seen, the transition time from the low to high state is

very sensitive to Ste7 molecule number. Also shown in the two lower panels

are the results from the rate equation for [Kpp] (solid black lines). To convert

to molecule number, the concentration was multiplied by the volume and

Avogadro’s number. In the top panel, the system is in the bistable regime so

the solution to the rate equation (not shown) remains near the low state.
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the cells have become activated. This transient binary re-

sponse can be observed for Ste7 concentrations well beyond

the bistable region; however, the time lag becomes less

pronounced.

We note that a transient binary response is also observed if

the pathway is operating within the bistable regime where the

activated state is sufficiently stable so that transitions back to

the deactivated state do not occur on biologically relevant

timescales (,2 h). In this case, the time-series of Fus3

activation does not show the S-shape seen in Fig. 5 A. That
is, the initial lag phase leading up to Fus3 activation is not

present. Also, unless the system is very close to the transition

to bistability at 44.6 nm, the lower stable steady state is

sufficiently stable that pathway activation does not occur on

timescales consistent with the experimental results.

The stochastic model can now be used to interpret the

results of the single cell fluorescence experiments shown in

Fig. 2. We postulate that under normal conditions in wild-

type cells, the pathway is not bistable, but operating suffi-

ciently close to a bistable region to generate a transient binary

response. For the sst2D strain, the pathway is operating well

beyond the bistable regime and therefore always responds in

a graded fashion. For the 2XSst2 strain at moderate pher-

omone concentrations (1–3 mM), the pathway is just to the

right of the bistable regime. This produces the transient

binary response as well as the previously documented delay

in Sst2 induction (19). For 2XSst2 strain, low pheromone

concentrations (,0.3 mM) are insufficient to generate a

response (data not shown). This indicates that the pathway is

operating in the bistable region or to the left of it. If this

model is correct, and if the binary-to-graded response is truly

mediated at the level of Fus3, it should be possible to pre-

dict the outcome of experiments in which the proteins that

regulate Fus3 are perturbed through deletion or twofold

overexpression of the gene.

Experimental analysis of model predictions

Although the model described above lacks many biological

details, it does make predictions that can be tested experi-

mentally. Sst2 is a negative regulator of the pheromone

response pathway. Deletion of Sst2 resulted in a temporally

graded response for each concentration of pheromone we

tested. Within the context of the computational model, dele-

tion of Sst2 increases the amount of active Ste7 and moves

the pathway away from the bistable regime shown in Fig. 3.

Msg5 is a negative regulator of the pathway that dephos-

phorylates Fus3. Therefore, increasing the activity or ex-

pression of Msg5 should counteract the effect of deleting

Sst2 and restore the binary response. To test this prediction,

we engineered cells lacking Sst2 to express twice the normal

amount of Msg5 (sst2D/2XMsg5). We then performed single

cell fluorescence measurements of transcription at various

pheromone concentrations. Whereas the parent sst2D strain

shows the typical graded response, the sst2D/2XMsg5 strain

exhibits a transient binary response for all pheromone con-

centrations tested. The results for the sst2D/2XMsg5 strain

are shown in the third column of Fig. 2 A and the third row of

Fig. 2 B. These results indicate that modest overexpression

of Msg5 can restore the transient binary response in cells

lacking Sst2, supporting the hypothesis that the graded-to-

binary conversion occurs at the level of the MAPK Fus3.

Sst2 synthesis is induced upon exposure to pheromone

(24). Induction of SST2 requires the transcription factor

Ste12, which is itself phosphorylated and activated by

Fus3 (25). Conversely, the activity of Fus3 is attenuated by

Sst2 acting on the G-protein. We recently reported that cells

engineered to overexpress Sst2 show a time delay in tran-

scriptional induction (19). Computational modeling sug-

gested that alterations in Fus3 activity could account for the

observed delay in Sst2 induction. The model predicts that the

delay results from a bottleneck that occurs near the transition

to bistability. That is, for the 2XSst2 strain at 3 mM of

FIGURE 5 (A) Simulation time-series for the activated Fus3 molecule

number NKpp. In this figure, the total Ste7 molecule number is 1062 (59 nM)

The solid line is the result from the rate equations and the dashed line is the

result from averaging 1250 realizations of the process. (B) Histograms from

the stochastic simulations at times 50, 65, 69, and 80 min. Panels A and B
illustrate that the Fus3 activation can account for the delay in the Sst2

dynamics and the transient binary response that are observed experimentally.
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pheromone, the pathway operates just to the right of

bistable region shown in Fig. 3. If this mechanism is correct,

then increasing the expression of a positive regulator of Fus3

should remove the time delay by moving the system further

away from the bistable region. To test this possibility, we

engineered cells to overexpress the MAPKK Ste7 in 2XSst2

strains (2XSst2/GAL-STE7). This was accomplished by in-

serting a plasmid containing the STE7 gene under the control

of the galactose-inducible GAL1/10 promoter. Fig. 6, A and

B, shows time-series for Sst2 induction in the 2XSst2/GAL-

STE7 and 2XSst2 strains grown in galactose. In agreement

with the model, the 2XSst2 strain shows a delayed response,

whereas in the 2XSst2/GAL-STE7 strain the delay is absent.

These results are in agreement with our model in which the

biochemical steps that regulate MAPK activation mediate

the graded-to-binary conversion.

Protein synthesis and degradation

The modeling results above indicate that small changes in

Ste7 abundance can have profound effects on Fus3 phos-

phorylation. A similar sensitivity on protein abundance was

found for the dephosphorylation of Fus3 by Msg5. It was

recently demonstrated that exposure to pheromone increases

the degradation rate of Ste7 (9). To further investigate the

role of protein turnover in the regulation of the pheromone

response pathway, we monitored the effects of pheromone

on the degradation of Fus3 and Msg5. After 1 h of growth in

the absence or presence of pheromone the cells were treated

with cycloheximide to block new protein synthesis. Steady-

state levels of Fus3 and Msg5 remaining were then monitored

by immunoblotting. As shown in Fig. 7, Msg5 abundance

declined quickly, and this decline was marginally faster

when the cells were pretreated with pheromone. A different

pattern of degradation was observed for Fus3. In this case

degradation was fairly slow, and was slowed even further

after pheromone treatment. These results are in contrast to

Ste7, which is degraded more slowly than Msg5 and more

rapidly than Fus3, and degradation is accelerated by pher-

omone treatment.

Based on these experimental results and the sensitivity of

Fus3 activation to Ste7 and Msg5 levels observed in the sto-

chastic simulations, we expanded the computational model to

include protein synthesis and degradation. Modeling protein

degradation requires assumptions about when proteins are

susceptible to proteolysis. We limit our investigations to the

Case II and Case III scenarios discussed in the Materials and

Methods. In Case I, protein synthesis and degradation are

ignored. In Case II, each protein is degraded at a rate that is

independent of its chemical state, and in Case III, each pro-

tein is protected from degradation when it forms a multimeric

complex or is phosphorylated. Clearly, there are other possi-

bilities for modeling protein degradation, and the mechanisms

for protein stabilization and destabilization are not fully

understood. However, these two scenarios represent extreme

cases, and serve to illustrate the important effects protein syn-

thesis and degradation have on the dynamics of the system.

We start with Case II, in which each protein is degraded at

a rate that is independent of its chemical state. The data

shown in Fig. 7 indicate that, in the presence of pheromone,

Fus3 is stable for the duration of the experiment. Therefore,

we only consider the degradation and synthesis of Ste7

and Msg5. At steady state, the total concentrations of Ste7

ð½KK�ssT Þ and Msg5ð½P�ssT Þ are given by the ratio of their

synthesis rate to their degradation rate (see Materials and

Methods). The degradation rate dP of Msg5 was estimated

from the data presented in Fig. 7 and the data of Wang and

Dohlman (9) was used to estimate the degradation rate dKK
of Ste7 (see Table 1). Fig. 8 A is a bifurcation diagram for

this system as a function of the Ste7 synthesis rate gKK.

In this figure, the synthesis rate gP of Msg5 was chosen to

produce molecular abundances similar to those measured

FIGURE 6 (A) Whole-cell extracts were prepared from wild-type cells

transformed with a single copy plasmid (pRS316) containing genomic SST2

(2XSST2) and either an empty vector (pYES) or the same vector containing

STE7 under control of the galactose-inducible GAL1/10 promoter (GAL-
STE7). Cells treated with 3 mM a-factor for the indicated times, collected,

resolved by 7.5% SDS-PAGE and immunoblotting, and probed using anti-

Sst2 polyclonal antiserum as indicated (IB). The specificity of each antibody

was confirmed using gene deletion or diploid cells lacking the indicated gene

product (19). (B) To estimate the difference in protein expression the Sst2

band was analyzed by densitometric scanning.
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experimentally. The bifurcation diagram is very similar to

the one shown in Fig. 3, except that the model parameter

being varied in this case is the Ste7 synthesis rate rather than

the Ste7 abundance. We performed stochastic simulations

to investigate if a binary response is possible in this case.

Initially, the protein levels were taken to be at their steady-

state values for a Ste7 synthesis rate of gKK¼ 0.224 s�1. The

model does not consider upstream elements of the pathway

such as the MAPK kinase kinase Ste11. Therefore, to simu-

late pathway activation the Ste7 synthesis rate was increased

to gKK¼ 0.339 s�1 at t ¼ 0. Because our model does not take

into account the phosphorylation of Ste7, mathematically

FIGURE 8 (A) A bifurcation diagram showing the steady-state concen-

tration of activated Fus3 concentration [Kpp] as a function of the Ste7

synthesis rate gKK for Case II (no protection from degradation). (B)

Simulation time-series for the activated Fus3 molecule number NKpp. In this

figure the Ste7 synthesis rate is 0.339 s�1. The solid line is the result from the

rate equations and the dashed line is an average over 500 realizations of the

process. The discrepancy between these two curves is due to the large effects

of the fluctuations in the activated Fus3 concentration. These fluctuations

eliminate the time lag in Fus3 activation. (C) Histograms of activated Fus3

molecule number from the stochastic simulations at times 150, 250, 300, and

350 min. Even though the system no longer shows a lag in Fus3 activation,

the transient binary response is still produced.

FIGURE 7 Cells containing an integrated TAP-tagged form of (A) Fus3

or (B) Msg5 were treated with 3 mM a-factor for 60 min, and then treated

with the protein synthesis inhibitor cycloheximide (CHX) for the indicated
times. Cell extracts were analyzed by immunoblotting with anti-protein

A antibodies. To estimate the difference in protein half-life, the intensity

of each band was analyzed by densitometric scanning and expressed as

a percentage of the amount of protein at the beginning of cycloheximide

treatment.

Computational Analysis of MAPK 1971

Biophysical Journal 90(6) 1961–1978



increasing the synthesis rate of Ste7 is similar to modeling

the pheromone-induced activation of Ste7 by Ste11. In-

creasing the Ste7 synthesis rate moves the pathway just

beyond the bistable regime (see Fig. 8 A). Fig. 8 B shows a

simulated time-series for Fus3 activation. Because the total

molecule numbers of Ste7 and Msg5 now fluctuate, there is

considerably more noise in the system (compare with Fig.

5 A). This increase in fluctuations allows the system to

transition between the two steady states more rapidly. This

can be seen by comparing the rate equation result (solid line)
and the result from averaging 500 realizations of the process

(dashed line). The increased fluctuations are almost suffi-

cient to eliminate the time lag. However, Fig. 8 C shows that

the system still produces a transient binary response. Notice

that the timescale for the pathway to respond is now con-

siderably longer than that for the activation of Fus3 shown

in Fig. 5 A. This is due to the fact that we have simulated

pathway activation by increasing the synthesis rate as a

surrogate for increasing the phosphorylation rate. Phospho-

rylation of Ste7 by Ste11 occurs on a faster timescale than

protein synthesis. In fact, in Fig. 5 it was assumed to occur

instantaneously. However, as long as Ste7 activation is not

rate-limiting, we expect an extended model that includes

Ste7 regulation to respond on a timescale similar to that ob-

served experimentally. Case II represents an extreme scenario

in which proteins can be degraded regardless of the chemical

state. Therefore, this case maximizes the effects of biochem-

ical fluctuations. One consequence of the large fluctuations is

that the time lag produced by the rate equations is almost

eliminated. In contrast, Case I minimizes the effects of fluc-

tuations, because variability in concentration levels that arises

from protein synthesis and degradation events is not present

in this model.

We now move to an intermediate case in which protein-

protein interactions (such as those leading to protein di-

merization) and phosphorylation protect proteins from

degradation. It is commonly observed that proteins in a func-

tional complex are more stable than when expressed alone.

One familiar example is the Gb- and Gg-subunits, neither of

which can be stably expressed or purified in the absence of the

other. For simplicity, we start with the case in which only Ste7

is degraded and synthesized, with the levels of total Fus3 and

Msg5 remaining constant. That is, d[K]T/dt ¼ d[P]T/dt ¼
0 and [KK]T satisfies Eq. 17, above. The rate equations for

the rest of the chemical species remain unchanged except for

the equation for the Ste7 concentration [KK], which now

includes the same synthesis and degradation terms as in Eq.

17. Equation 17 implies that at steady state the free Ste7

concentration is given by the synthesis rate gKK divided by

the degradation rate dKK. Fig. 9 A shows a plot of the total

Ste7 concentration ½KK�ssT as function of the synthesis rate

gKK. Surprisingly this plot is not monotonic, but goes

through a local maximum when gKK is;0.7 s�1. This effect

is a result of the protein complexes being protected from

degradation and the dual phosphorylation reaction. At low

levels of Ste7, most of the Fus3 is in the unphosphorylated or

singly phosphorylated state. Ste7 interacts strongly with

these two states and is then protected from degradation. As

Ste7 levels increase, the reactions in Fig. 1 B favor the dually

phosphorylated state. Therefore, there is less substrate for

Ste7 to interact with and to protect from degradation. As the

synthesis rate is increased further, the total amount of Ste7

again begins to increase. To illustrate the counterintuitive

observation that increasing synthesis rate of Ste7 can lead to a

decrease in its total concentration, the degradation rate of Ste7

was artificially increased to dKK ¼ 4 3 10�3 s�1. If the

experimentally measured value dKK ¼ 3.2 3 10�4 s�1 is

FIGURE 9 (A) The steady-state total Ste7 concentration ½KK�ssT as a

function of its synthesis rate gKK. The total concentration goes through a

local maximum near gKK ¼ 0.7 s�1. This results from protection from

degradation and the dual phosphorylation reactions. In this figure the

degradation rate was artificially increased to dKK¼ 43 10�3 s�1 to illustrate

the nonmonotonic behavior. (B) When the experimentally determined value

dKK ¼ 3.2 3 10�4 s�1 is used, the steady-state total Ste7 concentration

½KK�ssT again shows nonmonotonic behavior. However, in the case the

steady-state is not stable for the part of the curve with negative slope (dashed

line). In this region the system undergoes sustained oscillations. The

minimum and maximum values of [KK]T are plotted as circles. (Inset)
A time-series [KK]T of illustrating the periodic behavior. In this figure,

gKK ¼ 0.1 s�1.
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used, the results shown in Fig. 9 B are produced. As can be

seen, the steady value of the total Ste7 concentration still

goes through a local maximum. However, where the

concentration declines, the steady state is unstable (dashed
line). In this region, the system produces sustained oscilla-

tions. An example of these oscillations is shown in the inset.

The circles shown in Fig. 9 B indicate the minimum and

maximum values of the total Ste7 concentration. This model

can also exhibit bistability (see Appendix B). However, the

parameter range over which two stable steady states exist

appears to be limited.

We now consider the case in which the uncomplexed/free

forms of Fus3 and Msg5 also are degraded. In this case, the

total concentrations satisfy Eqs. 16–18. To estimate the de-

gradation rate dK of Fus3, we used the experimental results

in absence of pheromone presented in Fig. 7. The rationale

for this decision is that, in the absence of pheromone, most

Fus3 molecules are in the inactive state and available for

degradation, whereas, upon pheromone stimulation, phos-

phorylation of Fus3 leads to kinase/substrate interactions that

protect the protein from degradation. Therefore, the data in

the absence of pheromone provide a good estimate for the

degradation rate of free inactive Fus3. If this reasoning is

correct, then it implies that the pheromone-induced increase

in the degradation rate of Ste7 is actually larger than that

reported in Table 1, because these estimates did not take into

account protection against degradation through protein/

protein interactions. However, for simplicity we assume

that the rates estimated from the data for these two proteins

are the rates at which free protein is degraded. The synthesis

rates were chosen to produce protein numbers consistent

with experimental measurements. In this case, the steady-

state concentrations of free Fus3, Ste7, and Msg5 are given

by the ratio of their synthesis rates and degradation rates (i.e.,

[K]ss ¼ gK/dK, [KK]
ss ¼ gKK/dKK, and [P]

ss ¼ gP/dP), and it

is straightforward to show that the system has a unique

steady state. That is, this system cannot be bistable. Fig. 10 A
is a bifurcation diagram for the system as a function of the

Ste7 synthesis rate gKK. At small values of gKK, the system

always approaches steady state. However, at values greater

than gKK ¼ 0.013 s�1, the system undergoes sustained

oscillations in concentration. The circles again indicate the

maximum and minimum values of the activated Fus3 con-

centration [Kpp]. The periodic behavior is illustrated in Fig.

10 B, which shows time-series of the total Fus3 concentra-

tion [K]T (solid line), the activated Fus3 concentration [Kpp]
(shaded line), and the unphosphorylated Fus3 concentration

[K] (dashed line).
The qualitative explanation for the origin of the oscilla-

tions is that protein degradation acts as a negative feedback

on the bistable system. The combination of bistability and

negative feedback often leads to periodic behavior referred to

as hysteresis oscillations (6). This effect is illustrated in Fig.

10 C, which is a plot of the free Ste7 concentration [KK]

versus the total Ste7 concentration [KK]T. Also drawn is

FIGURE 10 (A) A bifurcation diagram showing the activated Fus3

concentration [Kpp] as a function of its synthesis rate gKK. For small values

of gKK there is a single stable steady state (solid line). At gKK ¼ 0.013 s�1,

this steady state becomes unstable (dashed line) and the system undergoes

sustained oscillations (circles). (B) Time-series of the total Fus3 concentra-

tion [K]T (solid line), the activated Fus3 concentration [Kpp] (shaded line),
and the inactive Fus3 concentration [K] (dashed line). In this figure, gKK ¼
0.016 s�1. (C) A plot of the activated the free Ste7 concentration [KK]

versus the total Ste7 concentration [KK]T (dotted line) using the same value

of gKK as in B. Also drawn on this figure is the bifurcation diagram

generated by using the time-averaged values of [K]T and [P]T. The periodic

trajectory closely follows the upper and lower branches of this curve and

rapidly transition between the two branches near the bifurcation points.
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the bifurcation curve computed under the assumption of

constant enzyme concentrations (i.e., no synthesis or degra-

dation). Therefore, to draw the bifurcation curve the time-

averaged values of the total Fus3 and Msg5 concentrations

were used. As can be seen, the periodic trajectory closely

follows the upper and lower branches of the curve in the re-

gion of bistability, rapidly jumping between the two

branches at the bifurcation points.

Stochastic modeling and oscillations

We next performed stochastic simulations to determine how

random fluctuations in protein abundance affect the oscilla-

tory dynamics described above. One important result of these

investigations is that the fluctuations increase the parameter

range over which the system exhibits oscillatory behavior.

Fig. 11 A shows a time-series from a stochastic simulation. In

this figure, the Ste7 synthesis rate is gKK ¼ 0.01 s�1. For this

value, the rate equations predict a stable steady state (see Fig.

10 A). However, the biochemical fluctuations are sufficiently

strong to destabilize the steady state and generate behavior

that appears periodic. Such behavior is typical of noisy

systems near a bifurcation and is referred to as noise-induced

oscillations. To investigate the periodicity of the oscillations,

we computed the power spectrum of the time-series gener-

ated from the stochastic model (Fig. 11 B). A clear peak is

seen in the spectrum at a frequency of 8 3 10�4 min�1,

indicating that the noise-induced oscillations are indeed

periodic. The inset in Fig. 11 B shows a histogram of the

interbeat interval (i.e., time between successive peaks in con-

centration) and provides a measure of the amount of vari-

ability in the period of the oscillations. The fact that stochastic

effects enlarge the parameter range over which the protein

concentrations oscillate makes it more likely that this peri-

odic behavior has biological significance.

The explanation of the transient binary response required

that the pathway operate near a bistable region. However,

when synthesis and degradation of all three enzymes are

included in the model, the system can no longer exhibit

bistability. To investigate if a binary response is possible in

this scenario, we performed stochastic simulations of path-

way activation. Histograms from the simulations are shown

in Fig. 12. To generate the histograms, the stochastic simu-

lations were started near the stable steady state that exists for

a Ste7 synthesis rate of gKK ¼ 0.005 s�1. Once again, to

model pathway activation, the Ste7 synthesis rate was

increased at t ¼ 0. In this case, the increase in synthesis rate

to gKK ¼ 0.016 s�1 moves the system into a regime where

oscillations occur (see Fig. 10 A). The results presented in

Fig. 12 illustrate that the strength of the biochemical

fluctuations is sufficient to generate significant variability

in the activation time of individual cells and produce a clear

binary response. The slow response of the pathway again

FIGURE 11 Noise-induced oscillations. (A) A time-series from a sto-

chastic simulation with gKK ¼ 0.01 s�1. For this value of the Ste7 synthesis

rate the rate equations predict a stable steady state. However, biochemical

fluctuations are sufficient to destabilize the steady state leading to sustained

oscillations. (B) The power spectrum computed from stochastic simulations

using the same parameter values as in A. A clear peak is seen at a frequency

of 8 3 10�4 min�1. (Inset) A histogram of the in interbeat interval.

FIGURE 12 Histograms from the stochastic model when protein synthe-

sis and degradation is considered. These results illustrate that a binary

response is possible when the system is undergoing sustained oscillations.
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results from simulating pathway activation by increasing the

Ste7 synthesis rate rather than modeling the phosphorylation

of Ste7. If larger values of the synthesis rate are used, the

response becomes graded (data not shown).

The oscillatory behavior presented above represents a

macroscopic phenomenon in the sense that it emerges from

the stochastic dynamics only if sufficiently large volumes

and protein abundances are considered. To investigate the

onset of oscillations, we performed stochastic simulations at

various volumes. The synthesis rate and second-order rate

constant were scaled appropriately to ensure that the rate

equations remained unchanged as the volume was increased

(see Materials and Methods). The results are summarized in

Figs. 13 and 14. Fig. 13 shows time-series of the active Fus3

molecule number for various volumes. Fig. 13 A corresponds

to a volume of 0.6 mm3. For this volume and protein abun-

dance, the time-series is dominated by fluctuations and no

periodic behavior is discernable. The steady-state distribu-

tion (two-dimensional histogram) for the activated Fus3 and

total Ste7 molecule numbers is shown in Fig. 14 A. In this

figure, red indicates regions where the system spends large

amounts of time and blue indicates regions that are visited

infrequently. For this small volume, the steady-state distri-

bution has very little structure. Figs. 13 B and 14 B
correspond to a volume of 6.0 mm3. Periodic behavior is

beginning to appear in the time-series. However, the steady-

state distribution indicates that the system is still dominated

by fluctuations. Figs. 13 C and 14 C are for a volume of 30

mm3, which is similar to the volume of a yeast cell. Here, the

periodic behavior is clear. The steady-state distribution is

clearly structured and lies mostly along the deterministic

trajectory (compare Fig. 14, C and D). These investigations

reveal that at volumes and protein abundances typical of yeast

cells, the qualitative behavior of the system is accurately

captured by the rate equations. However, these findings

highlight the importance of stochastic simulations to account

for the variability observed in single cell measurements.

DISCUSSION

The mating response system in yeast is arguably the best-

characterized signaling pathway of any eukaryote, and it has

long served as a prototype for hormone, neurotransmitter,

and sensory response systems in humans. At the receptor

level, signal transduction occurs in a graded fashion, with

pathway activation proportional to the agonist concentration.

However, downstream components of the pathway can

convert the graded response to a binary one. A common

mechanism for achieving this conversion is through positive

feedback (6). For example, we recently demonstrated that

pheromone promotes transcriptional induction as well as

ubiquitin-mediated degradation of Sst2, a negative regulator

of the pheromone pathway. These pheromone-regulated

changes in expression are likely to be functionally important,

since twofold overexpression of Sst2 converts the normally

graded response into a binary response (19). Moreover,

induction of Sst2 expression by pheromone is delayed when

Sst2 is overexpressed (2XSst2 strain). These results led us to

suggest a model in which pheromone-induced degradation of

Sst2 acts as a positive feedback mechanism to counteract the

negative effects of Sst2 on G-protein signaling. The model of

Sst2 regulation also suggested that the binary response exists

only transiently, with all cells eventually becoming activated.

FIGURE 13 Simulation time-series of the activated Fus3 molecule

number NKpp. (A) At small volumes (0.6 mm3) fluctuations dominate the

dynamics, and no periodic behavior is observable. (B) As the volume

increases (6 mm3), the fluctuations become less significant and periodic

behavior is starting to emerge. (C) At biological realistic volumes (30 mm3)

periodic behavior is clearly observable. (D) The result from the rate

equations.

FIGURE 14 (A–C) The corresponding steady-state distribution for the

activated Fus3 molecule number NKpp and total Ste7 molecule number NKKT

for the cases shown in Fig. 13. In these figures, red corresponds to regions

where the system spends large amounts of time and blue regions are visited

infrequently. (D) Plot of NKpp versus NKKT computed from the rate

equations.
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Although Sst2 acts at the G-protein level, other steps of

the pathway may likewise regulate the graded-to-binary

transformation. Poritz et al. (21) demonstrated, using sst2D
mutants, that inhibiting the pathway downstream of the

G-protein also converts a graded response to a binary one. In

this case, the binary response was long-lived, existing for

several hours. To further investigate pathway activation and

attenuation, we performed single cell fluorescence-based

transcription measurements on sst2D, wild-type, and 2XSst2
strains. The wild-type and 2XSst2 cells were both found to

exhibit a transient binary response, with all the cells be-

coming activated within 2 h. The sst2D mutant strain, in

contrast, showed a graded response. These new findings

coupled with our previous work and the results of Poritz et al.

(21) led us to investigate the regulation of the protein kinase

Fus3 as a potential mediator of the graded-to-binary re-

sponse. We focused on Fus3, because previous theoretical

results of Markevich et al. (7) demonstrated that a distrib-

utive kinetic mechanism for the dual phosphorylation of

protein kinases is sufficient to generate bistability. Our

stochastic modeling revealed that this mechanism, applied to

Fus3 regulation, can account for all the experimental ob-

servations outlined above. To test the validity of the model,

we genetically altered expression of proteins that normally

regulate Fus3. As predicted by the model, increasing ex-

pression of Msg5, a negative regulator of the pathway, coun-

teracted the positive effects of deleting Sst2 and restored the

binary response. Conversely, to counteract the increased neg-

ative effects of Sst2 in the 2XSst2 strain, we engineered cells

to overexpress Ste7. In full agreement with model predic-

tions, increased levels of Ste7 had the effect of removing the

time delay in Sst2 induction.

Our computational and experimental analysis suggests

that Fus3 regulation is responsible for the graded-to-binary

conversion in the yeast pheromone response. However, the

possibility that this conversion takes place downstream of

Fus3 cannot be ruled out. For example, Blake et al. (26) used

a stochastic model of transcription initiation to show that

pulsatile mRNA production, through reinitiation of tran-

scription, could account for the binary transcriptional re-

sponse observed for the yeast GAL1 promoter. However, our

ability to predict the results of altering the expression of

proteins that regulate Fus3 provides strong evidence that this

step of the pathway mediates the graded-to-binary conver-

sion in the pheromone response pathway.

Protein kinase cascades are a reoccurring feature of signal

transduction pathways and are found in all eukaryotic cells.

For this reason, many recent theoretical investigations have

focused on understanding their behavior (7,27–33). Protein

kinase cascades have been shown to exhibit ultrasensitivity

(28) and to lead to bistability and sustained oscillations of

concentration levels in the presence of feedback regulation

(30,31,33). Here we have demonstrated that a MAPK

cascade can generate sustained oscillations in the absence

of feedback regulation. This result builds on the work of

Markevich et al. (7), who demonstrated that multisite phos-

phorylation in protein kinase cascades is sufficient to

generate bistability. We have also shown that periodic

behavior occurs when protein synthesis and degradation are

included in the model of MAPK regulation. Thus, protein

turnover, which is often overlooked in MAPK signaling, can

profoundly influence the response of a signaling pathway

and may provide an important regulatory mechanism. In our

model, protein degradation acts as a negative feedback on a

bistable system and produces periodic behavior through

hysteresis oscillations. The oscillations occur when physical

modifications such as protein oligomerization and phos-

phorylation protect enzymes against degradation. The period

of the oscillations is determined mainly by the protein

degradation rate. Taken together, these findings highlight the

importance of considering protein stability and degradation

in generating models of biological processes.

One measure of our understanding of biological systems is

our ability to predict their behavior in detail. Intracellular

signaling pathways are highly nonlinear and often regulated

by multiple feedback loops. Additionally, these networks are

subject to stochastic fluctuations that arise from the random

nature of biochemical reactions. These features make pre-

dicting a pathway’s response to an external stimulus difficult,

if not impossible, without the aid of mathematical modeling.

Our stochastic modeling of the biochemical steps that reg-

ulate the MAPK Fus3 reveal that very small changes in the

abundance of the MAPKK Ste7 have a significant effect on

pathway activation. Such a high sensitivity to Ste7 levels

might underlie the cell’s ability to convert a small external

signal into a strongly amplified response. Any computational

model necessarily includes biological assumptions and math-

ematical simplifications. For example, many models of sig-

naling pathways ignore protein synthesis and degradation.

However, our analysis reveals that including protein turnover

can lead to sustained oscillations in protein concentrations that

are likely to have biological significance. These findings

demonstrate that mathematical modeling, when combined

with experimental analysis, provides a powerful tool for under-

standing the complex behavior of signaling pathways.

APPENDIX A: BIOCHEMICAL REACTIONS

In this Appendix, we list the biochemical reactions used in the stochastic

simulations and rate equations. Case I, in which proteins are not synthesized

or degraded, consists of the following reactions:

K1KKE*
k1

k�1

K � KK; (19)

K � KK �!k2 Kp1KK; (20)

Kp1KKE*
k�3

k3

Kp � KK; (21)

Kp � KK �!k4 Kpp1KK; (22)
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Kpp1 PE*
h1

h�1

Kpp � P; (23)

Kpp � P �!h2 Kp � P; (24)

Kp � PE*
h3

h�3

Kp1 P; (25)

Kp1 PE*
h4

h�4

ðKp � PÞ; (26)

ðKp � PÞE*
k5

k�5

K � P; (27)

K � PE*
h6

h�6

K1 P: (28)

The above reactions are identical to the ones considered by Markevich et al.

(7). Both phosphorylation events follow standard Michaelis-Menten kinet-

ics, Eqs. 19–22. Dephosphorylation occurs in two chemical steps. First the

phosphate is released, Eqs. 24 and 27, and then the kinase and phosphatase

dissociate, Eqs. 25 and 28. The dissociation of the kinase and phosphatase is

assumed to be reversible. The backward rate constants, h�3 and h�6, for this

process can be taken to be zero without significantly changing the results. In

this case, the kinetics is essentially Michaelis-Menten. The chemical species

(Kp�P) in Eqs. 26 and 27 results from the assumption that the phosphotyrosine

is dephosphorylated first (7,17). That is, the chemical species (Kp�P)
indicates the phosphatase attacking the phosphothreonine, whereas Kp�P is

the product after phosphotyrosine has been dephosphorylated.In addition to

Eqs. 19–28, Case II consists of the following reactions:

fE*
gKK

dKK

KK; (29)

fE*
gK

dK

K; (30)

fE*
gP

dP

P; (31)

Kp �!dK f; (32)

Kpp �!dK f; (33)

K � KK �!dKK K; (34)

K � KK �!dK KK; (35)

Kp � KK �!dKK Kp; (36)

Kp � KK �!dK KK; (37)

Kpp � P �!dK P; (38)

Kpp � P �!dP Kpp; (39)

Kp � P �!dK P; (40)

Kp � P �!dP Kp; (41)

ðKp � PÞ �!dK P; (42)

ðKp � PÞ �!dP Kp; (43)

K � P �!dK P; (44)

K � P �!dP K: (45)

Case III consists of Eqs. 19–31.

APPENDIX B: DISCUSSION ON BISTABILITY
FOR CASE II

It was shown that the inclusion of protein synthesis and degradation of Ste7

in the mathematical description of Fus3 regulation destroyed bistability in

this model for the parameter values listed in Table 1. The addition of protein

degradation and synthesis forces the steady-state Ste7 concentration to take

the value gKK/dKK, and a plot of the active Fus3 concentration [Kpp]ss

versus the synthesis rate gKK, does not have an S-shape similar to Fig. 3.

However, if [Kpp]ss is plotted against the total Ste7 concentration ½KK�ssT , the
resulting curve is identical to Fig. 3. The multiple values of [Kpp]ss for a

single value of ½KK�ssT results from the nonmonotonic behavior of ½KK�ssT
shown in Fig. 9, A and B. The reason why the functional dependence of

[Kpp]ss on ½KK�ssT is the same in this case as it is in Case I (no synthesis or

degradation) is as follows. The concentrations of all the chemical species

satisfy exactly the same equations as in Case I, except for the equation for the

Ste7 concentration [KK], which contains the two additional terms gKK – dKK
[KK]. In Case I, when the system is in the bistable region, the steady-state

equations have three solutions. However, Eq. 17 for the total Ste7 concen-

tration imposes an additional constraint on the steady state of the system,

[KK]ss ¼ gKK/dKK. This constraint uniquely selects one of the three possible

solutions. This argument does not rule out the possibility of bistability in this

model for other parameter values. In fact, it can be shown that the system can

be bistable. For this to occur, the steady-state equations for the concentra-

tions possess three solutions with identical values of [KK]ss. We have

assumed that only the free form of Ste7 is degraded. If we relax this

assumption and allow other chemical forms of Ste7 to be degraded, then the

constraint [KK]ss ¼ gKK/dKK no longer applies, and it seems likely that the

region of parameter values that show bistability would increase.
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