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Abstract— Computation underlies the genetic regulatory 
network activities. Previous studies have designed and 
engineered systems that can perform single logic gate 
functionalities, trying to avoid external and internal random 
fluctuations. In this work, we demonstrate the possibility to 
exploit noise when it cannot be eliminated. In particular, we 
adapt the LSR paradigm to a single-gene network derived from 
the bacteriophage λλ  and to a more robust two-gene network 
derived from the yeast S. cerevisiae. Our results demonstrate 
that in both cases there is an optimal amount of noise where the 
biological logic gate can be externally reprogrammed (i.e. switch 
from the AND to the OR gate) and perform well according to 
the truth table. 

I. INTRODUCTION  

Synthetic biology offers new strategies to address 

emerging problems in medical, pharmaceutical, 

environmental, and industrial areas. For example, a gene 

regulatory network (GRN) can deliver specific proteins or 

regulate treatments in response to a particular environment 

[1]. It can be implemented by just assembling simple 

components (modules) into more complex GRNs, similar to 

electronic circuits.  

The core of this work is to demonstrate, through 

calculations and simulations, the possibility of building a 

GRN that can switch between the AND and OR logic gate 

functionalities. The intriguing aspect of this biological logic 
gate is its ability to operate consistently and robustly in 

presence of random fluctuations and to change the logic gate 
functionality (see Fig. 1). The realization of this biological 

system is achieved through the application of the Logical 

Stochastic Resonance (LSR) paradigm [2]. LSR requires 

controls of external parameters to change the system’s 

nonlinearity and noise level in order to obtain the desired 

output signal (according to the logic gate truth tables). Noise 

is critical for the implementation and operation of the gates. 

II. LSR IN A SINGLE-GENE NETWORK: 

THE MAIN IDEA 

A. The Single-Gene Network 
Several applications have made use of the LSR 

paradigm [3, 4]. To test the possibility of adapting LSR [2] 

also to biology, we have chosen a synthetic gene network 

derived from the bacteriophage λ. 

To implement LSR, the biological system needs to be 

bistable: a logic gate (AND or OR in our case) has two 

expected output values, “1” or “0”. Moreover, this bistability 

can be represented by a double-well potential, where the left 

well is set as “0”, and the right well is set as “1”. LSR uses 

the external inputs to overbalance the potential to the left or 

to the right, so that the well representing the desired output 

(as defined by the truth tables [2]) becomes deeper (see Fig. 

2).  

The bacteriophage λ, after infecting the bacteria E. coli, 
can follow two pathways: lytic (the bacteriophage λ replicates 

its DNA autonomously, releasing hundreds phages) and 

lysogenic (the bacteriophage λ genome is incorporated into 

the bacteria genome). The decision between these two 

pathways depends on a positive feedback loop that regulates 

the repressor protein λ [5]. We have considered a DNA 

plasmid made of a promoter region PRM that regulates the cI 
gene. PRM is characterized by three tandem operator sites: 

OR1, OR2 (activate transcription), and OR3 (represses 

transcription). The system’s bistable configuration is reached 

only when the protein production is comparable to the protein 

degradation. 

 
Fig 1: Biological engineered circuits: LSR proposes the design and

engineering of a genetic network that can “morph” between the AND and
the OR gates by varying a control parameter. 
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B. The Deterministic Model 
For a complete comprehension of the genetic network, 

we have considered the slow and fast biochemical reactions 

that control the system (we are not reporting them in the 

present manuscript, see [6]). According to these reactions and 

considering high copy number plasmids, the λ repressor 

concentration dynamics can be described using the Langevin 

equations. The following equations represent the monomer 

and dimer concentration forms: 

˙ x = −2k1x
2 + 2k−1x2 + nkt p0(d1 + βd2 ) − kx x +εd0

˙ x 2 = k1x
2 − k−1x2 − ky x2,

         (1) 

where we assume that the RNA polymerase concentration p0 

is constant, while ε is the basal expression rate. In particular, 

x, x2, d0, d1, and d2 are the concentrations of the repressor 

protein in the monomer and dimer forms [6], the DNA 

promoter region with no bound protein, one or two bound 

proteins, respectively. Moreover, the slow and fast reactions 

are characterized by reaction rates: ki and k-i are rate constants 

for the dimerization reaction, kt is the transcription rate while 

one dimer is bound to the OR1 site, βkt is the enhanced rate by 

a factor β when a second dimer binds the OR2 site, kx is the 

degradation rate and ky is the dilution rate. 

We can now assume that the dimerization reactions are 

faster than the other reactions. This consideration allows us to 

reduce the system in (1) to a single equation. After 

considerable calculations [6] and without loss of generality, 

we can define the dimensionless variables �x = x K1K2
, 

�t = trK2 / 4 , r=εdT. The constant dT is the total concentration of 

the DNA promoter sites. We finally obtain (overbars on x and 

t are omitted for simplicity): 

 

�x =
(α −1)x 2 +σ1(αβ −1)x4 −σ1σ 2x6

(τ + x)(1+ x2 +σ1x
4 +σ1σ 2x6 )

+
1−γ x −γ yx2

τ + x
,         (2) 

 

where we have introduced the dimensionless parameters 

α = nkt p0dT / r , γ = kx / ( K1K2 r) , γ y = 2ky / (rK2 ) , and 

τ = K1K2 / 4K1
. TABLE I shows the definitions and values of 

the remaining parameters. 

Before implementing the LSR paradigm on the 

synthetic genetic network, we need to consider the general 

functioning of a logic gate. Its logic inputs can either be “0” 

or “1’’. We then have the following input sets: (0,0), (0,1), 

(1,0), and (1,1). Because of a lack of externally tunable 

parameters in our biological system, we have proposed that 

the two inputs of each set enter in (2) as the sum. In other 

words, the input set reduces to three combinations: (0,0), 

(0,1)/(1,0), and (1,1), where the sum of (0,1) and (1,0) gives 

the same value. Following this simplification, we will need 

only one biological parameter to encode the logic gate data 

inputs (that enters the systems through α) and another 

parameter to switch from the AND to the OR gate (that enters 

the system through γ). In particular, α is connected to the 

repressor protein basal rate of production, and γ is related to 

the degradation rate. Finally, we set the output signal as “0” if 

the system is in the left well (or low protein concentration), 

and “1” if the system is in the right well (high protein 

concentration). 

TABLE I.  PARAMETERS RELEVANT TO THIS SINGLE-GENE NETWORK 

Parameter value Definition 

β=11 Degree of transcriptional activation 

K1=k1/k-1=5.0 x 107M-1 Equilibrium constant dimerization 

K2=k2/k-2=5.0 x 107M-1 Equilibrium constant dimer-OR 

σ1=2
Binding affinity for the dimer to 

OR2 relative to OR1 

σ2=0.08 
Binding affinity for the dimer to 

OR3 relative to OR1 

 

For a deeper comprehension of the LSR implementation, 

we have analytically calculated the biological system 

potential function, U(x), by integrating the right-hand side of 

(2). It is important to notice that the α and γ parameters 

directly influence U(x): modifying the shape of each well. We 

used simulations to exhaustively search for the best α and γ 

values, limited to the interval of biological accessible 

parameters. We have then noticed that the bistable area in the 

accessible range of parameter values is narrow, and this 

influences the possibility to experimentally realize the LSR. 

To solve this problem, we have followed the theoretical 

suggestion from [7]. The idea is to choose the external 

parameter values so that the unwanted well almost 

disappears: it means that the bistable potential function in 
Fig. 2 overbalances on the left (configuration on the left of 

Fig. 2) or on the right (configuration on the right of Fig. 2), 

lowering as much as possible the barrier between the wells. In 

addition, LSR exploits Stochastic Resonance [8] for such 

cases where the potential function shows bistability. For 

example, it usually happens when the input sets are (0,1) or 

(1,0). In other terms, it can happen that the (0,0) or (1,1) cases 

can be realized when the potential function is almost 

monostable. 

Finally, we have obtained α=6.3, 9.8, and 13.3 to 

respectively encode (0,0), (0,1)/(1,0), and (1,1), while γ=50 

gives the AND gate functionality and γ=36 gives OR gate 

functionality. In almost all potential configurations obtained 

from this chosen values, U(x) presents two wells separated by 

a barrier. Moreover, if we consider the system dynamics 

without noise, and our initial condition is in the “wrong” 

well, the system will be trapped in this well giving undesired 

Fig 2. Bistable potential function U(x): the system can switch from the 

“wrong” well to the “correct” well, helped by noise.  
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signal output. As a consequence, we decided to exploit the 

presence of natural fluctuations affecting the GRN. 

C. In presence of Noise 
At the gene level, noise is generated from many sources. 

Scientists have classified it into two main classes [9]: 

extrinsic (inherent in other cellular components) and intrinsic 

(inherent in biochemical processes of gene expression) noise. 

To simply test our idea, here we focus on the (additive) 

extrinsic noise (the whole noise characterization is reported in 

[6]). Considering x in (2) as the repressor concentration, noise 

is the fluctuation of the “background” repressor production 

that influences the basal production rate, r. We can now write 

the stochastic model, under the assumption that fluctuations 

are small, by adding the random perturbation Dnξ(t) term on 

the right hand side of (2). In particular, ξ(t) is a zero-mean 

Gaussian noise with <ξ(t)ξ(t’)>=δ(t-t’) (we take into account 

that random fluctuations happen faster than other reaction 

time scale in the system) and with Dn the noise intensity. 

To analyze our results, we need to define a quantity that 

measures the system robustness in presence of noise and the 

possibility to realize the logic gate. In our case, this quantity 

is the logic gate performance, P(logic). It is defined as the 

ratio of successes in obtaining the desired output signal over 

the total number of trials (see Fig. 3). In particular, for each 

noise value, we have a success when the simulated outputs 

for all the three data input sets ((0,0), (0,1)/(1,0), and (1,1)) 

are equal to the respective truth table values. When this 

doesn’t happen, we consider it a failure. We have repeated 

this procedure 500 times. Moreover, we have solved it 

through simulating the stochastic model via the Euler-

Maruyama method, on the dimensionless time interval [0, 

7000]. In simulations, we noticed that the time interval is 

longer than the escape time the system takes to reach the 

“correct” well.  

Fig. 3 is the main result of this section: it shows P(logic) 
over the additive noise intensity Dn. We can notice that, in 

absence of a noise floor or when Dn is smaller than the barrier 

value between the two wells, the logic gate does not work 

properly: P(logic) is lower than 0.5. Moreover, if the noise 

intensity is very large, higher than the barrier height, the 

system loses the possibility to be confined in one of the wells 

and it quickly changes its state. Also in this case the logic 

gate outputs don’t match the truth table values. Between these 

two configurations, there is a range of noise values where the 

logical output occurs consistently and robustly. As Stochastic 

Resonance predicts [8], we have demonstrated that there is an 

optimal noise range where the biological logic gate works 

interchangeably as an AND gate or OR gate, in presence of 

noise, and P(logic)~1.  

III. LSR IN A TWO-GENE NETWORK 

We have shown that LSR can function in a single-gene 

network. However, it is oversimplified. To better guide future 

experimental verifications, we have developed a more 

detailed model. In this Section, we describe the possibility to 

apply LSR in a more robust genetic regulatory network.  

We have considered the mutual repressor motif of the 

genetic switch from the yeast S. cerevisiae [10]: the system 

consists of two repressor genes, LacI and TetR. This GRN is 

suitable for applying our idea: when LacI is in the higher 

state, TetR is in the lower one. This happens because of the 

mutual repression. Exploiting this effect, there is no need to 

measure the signal of both genes, but simply focus on one of 

them. Moreover, in Sec. II, we have pointed out that the 

single-gene network lacks accessible parameters necessary 

for the LSR implementation. This restriction forced us to 

enter each logic input set as the sum of the two data inputs. 

Instead, this new GRN allows the external control of all three 

parameters: two for encoding the logic gate data inputs and 

one for letting the system to switch from the AND gate to the 

OR gate. From [10], we know that it is possible to externally 

control the system dynamics by increasing or decreasing the 

inducer values (i.e., IPTG and ATc inactivate respectively the 

LacI and TetR repressor concentrations). Consequently, IPTG 

and ATc are the two data inputs of our biological model. 

Furthermore, to choose what logic gate functionality the 

system performs, we can tune the LacI degradation rate. 

Previous work has shown that it is possible to control the 

protein degradation rate through degradation machinery [11]. 

In our work, we simplified and adapted the proposed system 

in [11], by using copper as an external control parameter. In 

other words, more copper is present in the cell, below a toxic 

level, the higher is the degradation rate of the protein. 

In our study, we have firstly computed several bifurcation 

diagrams for different parameter values. In order to 

implement LSR, we have also explored the possibility to 

obtain a bistable region over a larger range of external 

parameter values. Our final goal is not only to build the LSR 

on a GRN, but also to look for the range of parameter values 

where LSR is optimally performed. With this in mind, we 

have selected the best bifurcation diagrams (one for the AND 

gate and the other for the OR gate) among all the possible 

cases.  

As in the single-gene network, the new system’s bistable 

region is very small. Consequently, we recurred to the same 

solution explained in Sec. II. We have then selected the 

suitable parameters and studied the system dynamics in 

presence of internal noise. The data input encoded by IPTG 

has values 0 mM (for the logic value “0”) and 10 mM (for the 

logic value “1”); instead, the encoded data input through ATc 

has values 8.5 ng/ml (for the logic value “0”) and 7.5 ng/ml 
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Fig 3. Logic gate performance. OR gate (solid line) and AND gate

(dashed line) performances versus the external noise intensity, Dn. α and

γ values are the same as in the text of [6]. 
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(for the logic value “1”). Finally the control parameter is 

copper that is approximately 0 μM (for the AND gate) and 40 

μM (for the OR gate). In this case, we have used the Gillespie 

algorithm [12] to reproduce step by step the biochemical 

reactions that happen in our GRN. This method is more 

realistic and able to take into account only internal 

fluctuations. 

We have run simulations fixing IPTG, ATc, and copper, 

for two different initial conditions: one near low protein 

number steady-state and the other near the high protein 

number steady-state. In Fig. 4, we have reported the output 

signal for the four input sets: (0,0), (0,1), (1,0) and (1,1). In 

this work, we only plot our simulations starting near the small 

protein number state. We show that also in presence of 

internal random fluctuations the system, after a short amount 

of time, reaches the expected well and remains there. For 

example, we can notice the magenta curve in the lower panel 

of Fig. 4: initially the system is in the “wrong” state and after 

a short amount of time it switches and remains in the 

expected configuration of high protein numbers. 

In Fig. 4, the upper panel represents the OR gate where 

only the (0,0) case has output in the lower state (that we set at 

“0”), while the lower panel represents the AND gate where 

only the (1,1) case has output in the higher state (that we set 

at “1”). In particular, the red curve is for the (0,0) case, the 

blue curve is for (1,0) case, the black curve for the (0,1) case, 

and the magenta curve is for the (1,1) case. 

In summary, we have demonstrated that it is possible to 

apply the LSR paradigm to a biological system. We have 

firstly used a single-gene network derived from a 

bacteriophage λ. Through mathematical modeling and 

simulations, we have searched for the best α and γ 

parameters, and we have consequently obtained the logic gate 

performance, P(logic). Results show that in an optimal band 
of noise, P(logic)~1 both for the AND gate and the OR gate: 

this demonstrates that our system can operate as two logic 

gates.  

Moreover, our single-gene network seems oversimplified 

for future experimental applications. This brought us to 

choose a two-gene network from the yeast S. cerevisiae. In 

this case, we have introduced a degradation machinery to 

make the biological logic gate reconfigurable. We have 

shown also for this system that there exists parameter values 

where the GRN, exploiting internal noise, can still perform as 

an AND or OR gate (according to the truth tables), and be 

reconfigured. 

LSR on a GRN offers the possibilities to utilize the 

computational power and functionality of engineered 

biological systems. 

REFERENCES 

 
[1] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A. Voigt, 
“Environmentally controlled invasion of cancer cells by engineered 

bacteria,” J. Mol. Biol., vol. 355, p. 619, 2006. 

[2] K. Murali, S. Sinha, W. L. Ditto, and A. R. Bulsara, “Reliable logic 
circuit elements that exploit nonlinearity in the presence of a noise floor,” 

Phys. Rev. Lett., vol. 102, p. 104101, 2009. 

[3] D. N. Guerra, A. R. Bulsara, W. L. Ditto, S. Sinha, K. Murali, and P. 
Mohantly, “A noise-assisted reprogrammable nanomechanical logic gate,” 

Nano Lett., vol. 10, p. 1168, 2010. 

[4] L. Worshech et al., “Universal and reconfigurable logic gates in a 
compact three-terminal resonant tunneling diode,” Appl. Phys. Lett., vol. 96, 

p. 042112, 2010. 

[5] J. Hasty, J. Pradines, M. Dolnik, and J.J. Collins, “Noise-based switches 
and amplifiers for gene expression,” Proc. Natl. Acad. Sci. U.S.A., vol. 97, p. 

2075, 2000. 

[6] A. Dari, B. Kia, X. Wang, A. R. Bulsara, and W. L. Ditto, “Noise-aided 
computation within a synthetic gene network through morphable and robust 

logic gates,” Phys. Rev. E, vol. 83, p. 041909, 2011. 

[7] A. Dari, B. Kia, A. R. Bulsara and W. L. Ditto, “Creating morphable 

logic gates using logical stochastic resonance in an engineered gene 

network,” EPL, vol. 93, p.18001, 2011. 

[8] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic 

Resonance,” Rev. Mod. Phys., vol. 70, p. 223, 1998. 

[9] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic 

gene expression in a single cell,” Science, vol. 297, p. 1183, 2002. 

[10] T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided 

construction of synthetic gene networks with predicted functions,” Nat. 
Biotechnol., vol. 27, p. 465, 2009. 

 [11] C. Grilly, J. Stricker, W. L. Pang, M. R. Bennett, and J. Hasty, “A 

synthetic gene network for tuning protein degradation in Saccharomyces 

cerevisiae,” Mol. Syst. Biol., vol. 3, p. 127, 2007. 

[12] D. T. Gillespie, " Exact Stochastic Simulation of Coupled Chemical 

Reactions," J. Phys. Chem., vol. 81, p. 2340, 1977.
 

 

Fig 4. Logic gate output signal for the four-digit-logic input sets: 
the red curve is for the (0,0) case, the blue curve is for (1,0) case, the 

black curve for the (0,1) case, and the magenta curve is for the (1,1) 

case. Upper panel. OR gate implementation, with initial conditions 

near the lower protein number steady-state and parameter values as in 

the text. Lower panel. AND gate implementation, with initial 

conditions near the lower protein number steady-state and parameter 
values as in the text. 
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