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Ascertaining the existence of hidden objects in a complex system, objects that cannot be observed from the
external world, not only is curiosity-driven but also has significant practical applications. Generally,
uncovering a hidden node in a complex network requires successful identification of its neighboring nodes,
but a challenge is to differentiate its effects from those of noise. We develop a completely data-driven,
compressive-sensing based method to address this issue by utilizing complex weighted networks with
continuous-time oscillatory or discrete-time evolutionary-game dynamics. For any node, compressive
sensing enables accurate reconstruction of the dynamical equations and coupling functions, provided that
time series from this node and all its neighbors are available. For a neighboring node of the hidden node, this
condition cannot be met, resulting in abnormally large prediction errors that, counterintuitively, can be
used to infer the existence of the hidden node. Based on the principle of differential signal, we demonstrate
that, when strong noise is present, insofar as at least two neighboring nodes of the hidden node are subject to
weak background noise only, unequivocal identification of the hidden node can be achieved.

W
hen dealing with an unknown complex system that has a large number of interacting components
organized hierarchically, curiosity demands that we ask the following question: are there hidden
objects that are not accessible from the external world? The problem of inferring the existence of

hidden objects from observations is quite challenging but it has significant applications in many disciplines of
science and engineering. Here by ‘‘hidden’’ we mean that no direct observation of or information about the object
is available, and so it appears to the outside world as a black box. However, due to the interactions between the
hidden object and other observable components in the system, it may be possible to utilize ‘‘indirect’’ information
to infer the existence of the hidden object and to locate its position with respect to objects that can be observed.
The difficulty to develop effective solutions is compounded by the fact that the indirect information on which any
method of detecting hidden objects relies can be subtle and sensitive to changes in the system or in the envir-
onment. In particular, in realistic situations noise and random disturbances are present. It is conceivable that the
‘‘indirect’’ information can be mixed up with that due to noise or be severely contaminated. The presence of noise
thus poses a serious challenge to detecting hidden nodes, and some effective ‘‘noise-mitigation’’ method must be
developed.

To formulate the problem in a concrete way and to gain insights into the development of a general methodo-
logy, we note that the basic principle underlying the detection of hidden objects is that their existence typically
leads to ‘‘anomalies’’ in the quantities that can be calculated or deduced from observation. Simultaneously, noise,
especially local random disturbances applied at the nodal level, can also lead to large variance in these quantities.
This is so because, a hidden node is typically connected to a few nodes in the network that are accessible to the
external world, and a noise source acting on a particular node in the network may also be regarded as some kind of
hidden object. Thus, the key to any detection methodology is to identify and distinguish the effects of hidden
nodes on measures for detection from those due to local noise sources.

In this paper, we focus on complex networks and develop a general method to differentiate hidden nodes from
local noise sources. This problem is intimately related to the works on reverse engineering of complex networks,
where the goal is to uncover the full topology of the network based on measured time series1–22. Our method is
based on the recent work23 on utilizing compressive sensing24–29 to detect hidden nodes in the absence of noise
sources. To explain our method in a concrete setting, we use the network configuration shown schematically in
Fig. 1, where there are 20 nodes, the couplings among the nodes are weighted, and the entire network is in a noisy
environment, but a number of nodes also receive relatively strong random driving. We assume an oscillator
network so that the nodal dynamics are described by nonlinear differential equations, and that time series can be
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measured simultaneously from all nodes in the network except one,
labeled as #20, which is a hidden node. The task of ascertaining the
presence and locating the position of the hidden node are equivalent
to identifying its immediate neighbors, which are nodes #3 and #7 in
Fig. 1. Note that, in order to be able to detect the hidden node based
on information from its neighboring nodes, the interactions between
the hidden node and its neighbors must be directional from the
former to the latter or be bidirectional. Otherwise, if the coupling
is solely from the neighbors to the hidden node, the dynamics of the
neighboring nodes will not be affected by the hidden node and,
consequently, time series from the neighboring nodes will contain
absolutely no information about the hidden node, which is therefore
undetectable. The action of local noise source on a node is naturally
directional, i.e., from the source to the node.

Our recent work23 demonstrated that, when the compressive-sens-
ing paradigm is applied to uncovering the network topology15, the
predicted linkages associated with nodes #3 and #7 are typically
anomalously dense, and this piece of information is basically what
is needed to identify them as the neighboring nodes of the hidden
node. In addition, when different segments of measurement data are
used to reconstruct the coupling weights for these two nodes, the
reconstructed weights associated with these two nodes exhibit sig-
nificantly larger variances than those associated with other nodes.
However, the predicted linkages associated with the nodes driven by
local noise sources can exhibit behaviors similar to those due to the
hidden nodes, leading to uncertainty in the detection of the hidden
node. To address this critical issue is essential to developing algo-
rithms for real-world applications, which is the aim of this paper. Our
main idea is to exploit the principle of differential signal to study the
behavior of the predicted link weights as a function of the data used in
the reconstruction. Due to the advantage of compressive sensing, the
required data amount can be quite small and, hence, even if our
method requires systematic increase of the data amount, it will still
be reasonably small. We shall argue and demonstrate that, when the
various ratios of the predicted weights associated with all pairs of
links between the possible neighboring nodes and the hidden node
are examined, those associated with the hidden nodes and nodes
under strong local noise show characteristically distinct behaviors,
rendering unambiguous identification of the neighboring nodes of
the hidden node. Any such ratio is essentially a kind of differential
signal, because it is defined with respect to a pair of edges.

Results
We present our results by using coupled oscillator networks. (Results
from evolutionary-game dynamical networks are presented in
Supporting Information.) Given such a networked system, we use
compressive sensing to uncover all the nodal dynamical equations
and coupling functions15. This can be done by expanding all the
vector fields and functions into series and calculating, from available
time series, all the coefficients in the expansion. The expansion base
needs to be chosen properly so that the number of non-zero coeffi-
cients is small as compared with the total number Nt of unknown
coefficients. All Nt coefficients constitute a coefficient vector to be
estimated. The amount of data used can be conveniently character-
ized by Rm, the ratio of the number M of data points used in the
reconstruction, to Nt. See Methods.

Our idea to distinguish the effects of hidden node and local noise
sources is based on the following observation. Consider two neigh-
boring nodes of the hidden node, labeled as i and j. Because the
hidden node is a common neighbor of nodes i and j, the couplings
from the hidden node should be approximately proportional to each
other, with the proportional constant determined by the ratio of their
link weights with the hidden node. When the dynamical equations of
nodes i and j are properly normalized, the terms due to the hidden
node tend to cancel each other, leaving the normalization constant as
a single unknown parameter that can be estimated subsequently. We
name this parameter cancellation ratio and denote it by Vij. As the
data amount is increased, Vij tends to its true value. Practically we
then expect to observe systematic changes in the estimated value of
the ratio as data used in the compressive-sensing algorithm is
increased from some small to relatively large amount. If only local
noise sources are present, the ratio should show no systematic change
with the data amount. Thus the distinct behaviors of Vij as the
amount of data is increased provides a way to distinguish the hidden
node from noise and, at the same time, to ascertain the existence of
the hidden node. A mathematical formulation of this general prin-
ciple can be found in Methods.

We test our method to differentiate hidden nodes and noise using
random networks of nonlinear/chaotic oscillators. To be concrete,
we choose the nodal dynamics to be that of the Rössler oscillator, one
of the classical models in nonlinear dynamics30,

_xi, _yi, _zi½ �~ {yi{zi, xiz0:2yi, 0:2zzi xi{5:7ð Þ½ �,

which exhibits a chaotic attractor. The size of the network varies from
20 to 100, and the probability of connection between any two nodes is
0.04. The network link weights are equally distributed in [0.1, 0.5]
(arbitrary). Background noise of amplitude j is applied (indepen-
dently) to every oscillator in the network, with amplitude varying
from 1024 to 5 3 1023. The noise amplitude is thus smaller than the
average coupling strength of the network. The tolerance parameter e
in the compressive sensing algorithm can be adjusted in accordance
with the noise amplitude (see Supporting Information for details).
Time series are generated by using the standard Heun’s algorithm31

to integrate the stochastic differential equations. To approximate the
velocity field, we use third-order polynomial expansions in the com-
pressive-sensing formulation. (In Supporting Information, we pre-
sent more examples using network systems of varying sizes, different
weight distributions and topologies, and alternative nodal
dynamics.).

Detecting hidden node from time series. As a concrete example, we
consider the network in Fig. 1, where only background noise is
present and there are no local noise sources. Linear coupling
between any pair of connected nodes is from the z-component to
the x-component in the Rössler system. From the available time
series (nodes #1–19), we solve the coefficient vector using a
standard compressive-sensing algorithm [http://users.ece.gatech.
edu/justin/l1magic/]. In particular, for node i, the terms associated

Figure 1 | An example of a complex network with a hidden node. Time

series from all nodes except hidden node #20 can be measured, which can

be detected when its immediate neighbors, nodes #3 and #7 are

unambiguously identified. Nodes #7, #11, and #14 are driven by local noise

sources.
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with couplings from the z-components of other nodes appear in the
ith row of the coupling matrix. As shown in Fig. 2(a), when the data
amount is Rm 5 0.7, the network’s coupling matrix can be predicted.
The predicted links and the associated weights are sparse for all nodes
except for nodes #3 and #7, the neighbors of the hidden node. While
there are small errors in the predicted weights due to background
noise, the predicted couplings for the two neighbors of the hidden
node, which correspond to the 3rd and the 7th row in the coupling
matrix, appear to be from almost all other nodes in the network and
some coupling strength is even negative. Such anomalies associated
with the predicted coupling patterns of the neighboring nodes of the
hidden node cannot be removed by increasing the data amount.
Nonetheless, it is precisely these anomalies which hint at the
likelihood that these two ‘‘abnormal’’ nodes are connected with a
hidden node.

While abnormally high connectivity predicted for a node is likely
indication that it belongs to the neighborhood of the hidden node, in
complex networks there are hub nodes with abnormally large
degrees, especially for scale-free networks32. In order to distinguish
a hidden node’s neighboring node from some hub node, we use the
variance of the predicted coupling constants, which can be calculated
from different segments of the available data sets. Due to the intrins-
ically low-data requirement associated with compressive sensing, the
calculation of the variance is feasible because any reasonable time
series can be broken into a number of segments, and prediction can
be made from each data segment. For nodes not in the neighborhood

of the hidden node, we expect the variance to be small as the pre-
dicted results hardly change when different segments of the time
series are used. However, for the neighboring nodes of the hidden
node, due to lack of complete information needed to construct the
measurement matrix, the variance values can be much larger.
Figure 2(b) shows the variance s2 in the predicted coupling strength
for all 19 accessible nodes. We observe that the values of the variance
for the neighboring nodes of the hidden node, nodes #3 and #7, are all
above the upper dashed line and are in fact significantly larger than
those associated with all other nodes that all fall below the lower
dashed line. This indicates strongly that they are indeed the neigh-
boring nodes of the hidden node. The gap between the two dashed
lines can be taken as a quantitative measure of the detectability of the
hidden node. The larger the gap, the more reliable it is to distinguish
the neighbors of the hidden node from the nodes that not in the
neighborhood. The results in Fig. 2 thus indicate that the locations
of the hidden node(s) in the network can be reliably inferred even in
the presence of weak background noise. The size of the gap, or the
hidden-node detectability depends on the system details. In
Supporting Information, we present results of a systematic analysis
of the detectability measure, where we find that the variance due to
the hidden nodes is mainly determined by the strength of their coup-
ling with the accessible nodes in the network. We also find that
system size and network topology have little effect on the hidden-
node detectability. It is worth emphasizing that the detectability
relies also on successful reconstruction of all nodes that are not in
the neighborhood of the hidden nodes, which determine the lower
dashed line in Fig. 2.

To quantify the reliability of the reconstruction results, we invest-
igate how the prediction errors in the link weights of all accessible
nodes, except the predicted neighbors of the hidden node, change
with the data amount. For an existent link, we use the normalized
absolute error Enz, the error in the estimated weight with respect to
the true one, normalized by the value of the true link weight. Figure 3
shows the results for N 5 100. The link weights are uniformly dis-
tributed in the interval [0.1, 0.5] and the background noise amplitude
is j 5 1023. The tolerance parameter in the compressive-sensing
algorithm is set to be e 5 0.5, which is optimal for this noise ampli-
tude. (In Supporting Information we provide details of determining
the optimal tolerance parameter for different values of the back-
ground noise amplitude.) We see that for Rm . 0.4, Enz decreases
to the small value of about 0.01, which is determined by background
noise level. As Rm is increased further, the error is bounded by a small
value determined by the noise amplitude, indicating that the recon-
struction is robust. Although the value of Enz does not decrease
further toward zero due to noise, the prediction results are reliable
in the sense that the predicted weights and the real values agree with
each other, as shown in the inset of Fig. 3, a comparison of the actual
and the predicted weights for all existent links. All the predicted
results are in the vicinities of the corresponding actual values, as
indicated by a heavy concentration of the dots along the diagonal
line. The central region in the dot distribution has brighter color than
the marginal regions, confirming that vast majority of the predicted
results are accurate. In Supporting Information, we further show that
robust reconstruction can be achieved regardless of the network size,
connection topology and weight distributions, insofar as sufficient
data are available.

The error measure Enz to characterize the accuracy of the recon-
struction is similar to z-scores, or the standard score in statistics, with
the minor difference being that z-scores use the standard derivatives
of the distribution to normalize the raw scores, while we use the exact
values in our model examples. In realistic applications the exact
values are usually not available, so it is necessary to use the z-score
measure.

We emphasize that there are two types of ‘‘dense’’ connections:
one from reconstruction and another intrinsic to the network. In

Figure 2 | For the network in Fig. (1), (a) predicted coupling matrix for all

nodes except node #20. Time series from nodes #1 to #19 are available,

while node #20 is hidden. The predicted weights are indicated by color

coding and the amount of data used is Rm 5 0.7. The abnormally dense

patterns in the 3rd and 7th rows suggest that nodes #3 and #7 are the

immediate neighbors of the hidden node. (b) Variance s2 of the predicted

coefficients for all accessible nodes, which is calculated using 20

independent reconstructions based on different segments of the data. The

variances associated with nodes #3 and #7 are apparently much larger than

those with the other nodes, confirming that these are the neighboring

nodes of the hidden node. There is a definite gap between the values of the

variance associated with neighboring and non-neighboring nodes of the

hidden node, as indicated by the two horizontal dashed lines in (b). When

the local noise sources are applied to node #7, #11 and #14, these there

nodes have similar dense bars in (a) and large variances in (b) (data are not

shown).

www.nature.com/scientificreports
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particular, in the two-dimensional representation of the reconstruc-
tion results [e.g., Fig. 2(A)], the neighboring nodes of the hidden
node typically appear densely linked to many other nodes in the
network. These can be a result of lack of incomplete information
(i.e., time series) due to the hidden node (in this case, there is indeed a
hidden node), or the intrinsic dense connection pattern associated
with, for example, a hub node in a scale-free network. Our idea of
examining the variances of the reconstructed connections from inde-
pendent data segments is for distinguishing these two possibilities.
As we have demonstrated, extensive computations indicate that a
combination of the dense connection and large variance can ascer-
tain the existence of hidden node reliably.

Differentiating hidden node from local noise sources. When
strong noise sources are present at certain nodes, the predicted
coupling patterns of the neighboring nodes of these nodes will
show anomalies. (Here by ‘‘strong’’ we mean that the amplitudes
of the random disturbances are order-of-magnitude larger than
that of background noise.) We now demonstrate that our
proposed method based on the cancellation ratio is effective at
distinguishing hidden nodes from local noise sources, insofar as
the hidden node has at least two neighboring nodes not subject to
such disturbances. To be concrete, we choose a network of N 5 61
coupled chaotic Rössler oscillators, which has 60 accessible nodes
and one hidden node (#61) that is coupled to two neighbors: nodes
#14 and #20, as shown schematically in Fig. 4. Assume a strong noise
source is present at node #54. We find that the reconstructed weights
match their true values to high accuracy. We also find that the
reconstructed coefficients including the ratio Vij are all constant
and invariant with respect to different data segments, a strong
signal that the pair of nodes are the neighboring nodes of the same
hidden node, thereby confirming its existence.

When there are at least two accessible nodes in the neighborhood
of the hidden node which are not subject to strong noisy disturbance,
such as nodes #14 and #20, as the data amount Rm is increased
towards 100%, the cancellation ratio should also increase and

approach unity. This behavior is shown by the open circles in
Fig. 5(a). However, when a node is driven by a local noise source,
regardless of whether it is in the neighborhood of the hidden node,
the cancellation ratio calculated from this node and any other access-
ible node in the network will show a characteristically different beha-
vior. Consider, for example, nodes #14 and #54. The reconstructed
connection patterns of these two nodes both show anomalies, as they
appear to be coupled with all other nodes in the network. In contrast
to the case where the pair of nodes are influenced by the hidden node
only, here the cancellation ratio does not show any appreciable
increase as the data amount is increased, as shown by the crosses
in Fig. 5(a). In addition, the average variance values of the predicted
coefficient vectors of the two nodes exhibit characteristically differ-
ent behaviors, depending on whether any one node in the pair is
driven by strong noise or not. In particular, for the node pair #14 and
#20, since neither is under strong noise, the average variance will
decrease toward zero as Rm approaches unity, as shown in Fig. 5(b)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

R
m

E
nz

0 0.2 0.4 0.6
0

0.2

0.4

0.6

W
Real

W
P

re
d.

Figure 3 | For random networks of size N 5 100 with uniform weight
distribution in [0.1, 0.5], prediction error Enz associated with nonzero
coefficients of the dynamical equations of all nodes except for the
neighboring nodes of the hidden node, as a function of normalized data
amount Rm. The background noise amplitude is j 5 1023 for all nodes. All

data points are obtained from 10 independent realizations. Inset is a

comparison of the predicted and actual weights for all existent links. Each

dot represents one such link, and its x-value is the actual weight while the y-

value is the corresponding predicted result. The color for each dot is

determined by the dot density around it, while bright color signifies high

density. The arrow indicates the value of Rm used in the comparison study.

The tolerance of the compressive-sensing algorithm is set to be e 5 0.5.
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Hidden node
Local noise
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Figure 4 | Schematic illustration of a hidden node and its coupling
configuration with two neighbors in a random network of N 5 61 nodes,
where 60 are accessible. A strong noise source is present at node #54.
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driven by noise of amplitude j 5 1022 (crosses). (b) Average variance

values of the predicted local coefficient vectors for the two combinations.

The background noise amplitude is j 5 1025. The results are obtained from

20 independent realizations.
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(open circles). In contrast, for the node pair #14 and #54, the average
variance will increase with Rm, as shown in Fig. 5(b) (crosses). This is
because, when one node is under strong random driving, the input to
the compressive-sensing algorithm will be noisy and its performance
will deteriorate. However, compressive sensing can perform reliably
when the input data are ‘‘clean,’’ even when they are sparse.
Increasing the data amount beyond a threshold is not necessarily
helpful, but longer and noisy data sets can degrade significantly the
performance. The results in Figs. 5(a,b) thus demonstrate that the
cancellation ratio between a pair of nodes, in combination with
the average variance of the predicted coefficient vectors associated
with the two nodes, can effectively distinguish a hidden node from a
local noise source. If there are more than one hidden node or there is
a cluster of hidden nodes, the procedure to estimate the cancellation
factors is similar but requires additional information about the
neighboring nodes of the hidden nodes. Our cancellation-factor
based method can be extended to network systems with nodal
dynamics not of the continuous-time type, such as evolutionary-
game dynamics. See Supporting Information for details.

Discussion
Our program to differentiate a hidden node from local noise sources
and then to infer its existence can be summarized into the following
steps:

. Collect time series of dynamical variables from accessible nodes;

. Hypothesize suitable expansion bases for nodal dynamics and
coupling functions, taking advantage of physical understanding
of the underlying networked dynamical system;

. Construct the measurement matrix and derivative vector from
time series, and solve the expansion-coefficient vector using com-
pressive sensing;

. Identify all nodes with abnormally dense connections, and cal-
culate the corresponding variances using independent segments
of the available time series to eliminate the hub nodes in the
network (for those nodes the variances will be much smaller than
those of the neighboring nodes of the hidden node or nodes under
strong local noise);

. For all the remaining nodes with abnormally dense connections,
calculate the cancellation ratio for all possible node pairs and also
the average variance of the predicted coefficient vectors using
non-overlapping time-series segments for a series of systematic-
ally increasing values of the data amount Rm;

. Identify the neighboring nodes of the hidden node as those with
cancellation ratios approaching unity and the average variance
tending to zero as Rm is increased. For those pairs with cancel-
lation ratio not increasing and/or the average variance not
decreasing with Rm, one node in the pair is under the driving of
a local noise source.

Detecting hidden nodes in complex networks with a priori
unknown nodal dynamics, topology, and coupling weights has vast
application potential, such as in social and biological networks.
Inferring the existence of hidden node in the presence of local ran-
dom perturbations is an extremely challenging problem. Our efforts
represent a step forward in this area of research, where much further
work is needed.

Methods
Compressive-sensing based method to uncover network dynamics and topology.
We consider the typical setting of a complex network of N coupled oscillators in a
noisy environment. The dynamics of each individual node, when it is isolated from
other nodes, can be described as _xi~Fi xið Þzjgi , where xi [ Rm is the vector of state
variables, and gi are an m-dimensional vector whose entries are independent
Gaussian random variables of zero mean and unit variance, and j denotes the noise
amplitude. A weighted network can be described by

_xi~Fi xið Þz
XN

j~1,j=i

Wij: H xj
� �

{H xið Þ
� �

zjgi, ð1Þ

where Wij [ Rm|m is the coupling matrix between node i and node j, and H is the
coupling function. Defining

F0 i xið Þ:Fi xið Þ{H xið Þ:
XN

j~1,j=i

Wij,

we have

_xi~F0 i xið Þz
XN

j~1,j=i

WijH xj
� �

zjgi, ð2Þ

i.e., we have grouped all terms directly associated with node i into F0 i xið Þ. We can then
expand F9(xi) into the following form:

F0 i xið Þ~
X

c

~a cð Þ
i
:~g cð Þ

i xið Þ, ð3Þ

where ~g cð Þ
i xið Þ are a set of orthogonal and complete base functions chosen such that

the coefficients ~a cð Þ
i are sparse. While the coupling function H(xi) can be expanded in a

similar manner, for simplicity we assume that they are linear: H(xi) 5 xi. We then
have

_xi~
X

c

~a cð Þ
i
:~g cð Þ

i xið Þz
XN

j~1,j=i

Wij
:xjzjgi, ð4Þ

where all the coefficients ~a cð Þ
i and weights Wij need to be determined from time series

xi. In particular, the coefficient vector ~a cð Þ
i determines the nodal dynamics and the

weighted matrices Wij’s give the full topology and coupling strength of the entire
network.

Suppose we have simultaneous measurements of all state variables xi(t) and xi(t 1

dt) at M different uniform instants of time at interval Dt apart, where dt=Dt so that
the derivative vector _xi can be estimated at each time instant. Equation (4) for all M
time instants can then be written in a matrix form with the following measurement
matrix:

Gi~

~gi t1ð Þ x1 t1ð Þ � � � xk t1ð Þ � � � xN t1ð Þ
~gi t2ð Þ x1 t2ð Þ � � � xk t2ð Þ � � � xN t2ð Þ

..

. ..
.

� � � ..
.

� � � ..
.

~gi tMð Þ x1 tMð Þ � � � xk tMð Þ � � � xN tMð Þ

0
BBBB@

1
CCCCA, ð5Þ

where the index k in xk(t) runs from 1 to N, k ? i, and each row of the matrix is
determined by the available time series at one instant of time. The derivatives at
different time can be written in a vector form as Xi~ _xi t1ð Þ, � � � , _xi tMð Þ½ �T , and the
coefficients from the functional expansion and the weights associated with all links in
the network can be combined concisely into a vector ai as

ai~ ~ai, W1i, � � � , Wi{1,i, Wiz1,i, � � � , WN,i½ �T , ð6Þ

where [?]T denotes the transpose. For properly chosen expansion base and a general
complex network whose connections are typically sparse, the vector ai to be deter-
mined is sparse as well. Finally, Eq. (4) can be written as

Xi~Gi
:aizjgi: ð7Þ

In the absence of noise or if the noise amplitude is negligibly small, Eq. (7) represents a
linear equation but the dimension of the unknown coefficient vector ai can be much
larger than that of Xi, and the measurement matrix will have many more columns
than rows. In order to fully recover the network of N nodes with each node having m
components, it is necessary to solve N 3 m such equations.

Recovering signal from noisy measurement with compressive sensing algorithm.
The system of linear equations in Eq. (7 is ill defined. However, since ai is sparse,
insofar as its number of non-zero coefficients is smaller than the dimension of Xi, the
vector ai can be uniquely and efficiently determined by the compressive-sensing
algorithm24–29. In particular, in the equation X 5 G ? a 1 j, reliable recovery of the P-
dimension sparse vector a is achievable, according to25, where X [ RQ|1 and
G [ RQ|P but P=Q. A sufficiently sparse vector a can be reconstructed by solving the
following l1 regularization problem:

min ak kl1 , subject to G:a{Xk kl2 ƒe, ð8Þ

where the l1 norm for a vector x is defined as xk kl1 ~
Xn

i~1
xij j, its l2 norm is

xk kl2 ~
Xn

i~1
x2

i

�� ��, e is the threshold value determined by the noise amplitude. The

reconstructed vector �a lies within the range: �a{ak kƒC:e, where C is a constant.
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Detection of hidden node. To motivate our consideration, we note that, a meaningful
solution of Eq. (7) based on compressive sensing requires that the derivative vector Xi

and the measurement matrix Gi be entirely known which, in turn, requires time series
from all nodes. In this case, we say that information available for reconstruction of the
complex networked system is complete. In the presence of a hidden node, for its
immediate neighbors, the available information will not be complete in the sense that
some entries of the vector Xi and the matrix Gi become now unknown. Let h denote
the hidden node. For any neighboring node of h, the vector Xi and the matrix Gi in Eq.
(7) now contain unknown entries at the locations specified by the index h. For any
other node not in the immediate neighborhood of h, Eq. (7) is unaffected. When
compressive-sensing algorithm is used to solve Eq. (7), there will then be large errors
in the solution of the coefficient vector ai associated the neighboring nodes of h,
regardless of the amount of data used. In general, the so-obtained coefficient vector ai

will not appear sparse. Instead, most of its entries will not be zero, a manifestation of
which is that the node would appear to have links with almost every other node in the
network. In contrast, for nodes not in the neighborhood of h, the corresponding
errors will be small and can be reduced by increasing the data amount, and the
corresponding coefficient vector will be sparse. It is this observation which makes
identification of the neighboring nodes of the hidden node possible in the noiseless or
weak-noise situations23.

To appreciate the need and the importance to distinguish the effects of hidden node
from these of noise, we can separate the term associated with h in Eq. (4) from those
with other accessible nodes in the network. Letting l denote a node in the immediate
neighborhood of the hidden node h, we have

Xl~G0l :a
0
l z Wlh

:xhzjglð Þ, ð9Þ

where G0l is the new measurement matrix that can be constructed from all available
time series. While background noise may be weak, the term Wlh ? xh can in general be
large in the sense that it is comparable in magnitude with other similar terms in Eq.
(4). Thus, when the network is under strong noise, especially for those nodes that are
connected to the neighboring nodes of the hidden node, the effects of hidden node on
the solution can be entangled with those due to noise. In addition, if the coupling
strength from the hidden node is weak, it would be harder to identify the neighboring
nodes. For example, hidden node in a network with Gaussian weight distribution will
be harder to detect, due to the finite probability of the occurrence of near zero weights.
When the coupling strength is comparable or smaller than the background noise
amplitude, the corresponding link cannot be detected. See Supporting Information
for details.

Method to distinguish hidden nodes from local noise sources - a mathematical
formulation. For simplicity, we assume that all coupled oscillators share the same
coupling scheme and that each oscillator is coupled to any of its neighbors through
one component of the state vector only. Thus, each row in the coupling matrix Wih

associated with a link between node i and h has only one non-zero element. Let p
denote the component of the hidden node coupled to the first component of node i,
the dynamical equation of which can then be written as

_xi½ �1~
X

c

~a cð Þ
i
:~g cð Þ

i xið Þ
" #

1

z
XN

k=i,h

Wij
:xj

" #
1

zw1p
ih
: xh½ �pzjgi, ð10Þ

where [xh]p denotes the time series of the pth component of the hidden node, which is
unavailable, and w1p

ih is the coupling strength between the hidden node and node i.
The dynamical equation of the first component of neighboring node j of the hidden
node has a similar form. Letting

Vij~w1p
ih

.
w1p

jh , ð11Þ

be the cancellation ratio, multiplying Vij to the equation of node j, and subtracting
from it the equation for node i, we obtain

_xi½ �1~Vij _xj
� �

1z
X

c

~a cð Þ
i
:~g cð Þ

i xið Þz
X

k=i,h

w1p
ik xk½ �p

{Vij

X
c

~a cð Þ
j
:~g cð Þ

j xj
� �

{Vij

X
k=j,h

w1p
jk xk½ �p

z w1p
ih {Vijw

1p
jh

� �
: xh½ �pzjgi{Vijjgj:

ð12Þ

We see that terms associate with [xh]p vanish and all deterministic terms on the left-
hand side of Eq. (12) are known, which can then be solved by the compressive-sensing
method. From the coefficient vector so estimated, we can identify the coupling of
nodes i and j to other nodes, except for the coupling between themselves since such
terms have been absorbed into the nodal dynamics, and the couplings to their
common neighborhood are degenerate in Eq. (12) and cannot be separated from each
other. Effectively, we have combined the two nodes together by introducing the
cancellation ratio Vij.

To give a concrete example, we consider the situation where each oscillator has
three independent dynamical variables, named as x, y and z. For the nodal and
coupling dynamics we choose polynomial expansions of order up to n. The x com-
ponent of the nodal dynamics F0i xið Þ½ �x for node i is:

F0i xið Þ½ �x~
Xn

lx~0

Xn

ly~0

Xn

lz~0

alx ly lz

� �
x
:xlx

i y
ly
i zlz

i ,

and the coupling from other node k to the x component can be written as

Cx
ik~wxx

ik
:xkzwxy

ik
:ykzwxz

ik
:zk,

where wxy
ik denotes the coupling weight from the y component of node k to the x

component of node i, and so on. The nodal dynamical terms in the matrix Gi are

~gi

� �
x~ x0

i y0
i z0

i ,x1
i y0

i z0
i , � � � ,xn

i yn
i zn

i

� �
,

and the corresponding coefficients are alx ly lz

� �
x
. The vector of coupling weights is

Wij
� �

x~ wxx
ij ,wxy

ij ,wxz
ij

h i
. Equation (12) becomes
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where c is the sum of constant terms from the dynamical equations of nodes i and j,
and ~a0i is the coefficient vector to be estimated which excludes all the constants. Using
compressive sensing to solve Eq. (13), we can recover the cancellation ratioVij and the
equations of node i. When Vij is known we can then recover the dynamics of node j
from the coefficient vector �Vij

:~a0j .
In Supporting Information we provide an analysis and discussion about the pos-

sible extension of our method to systems of characteristically different nodal
dynamics and/or with multiple hidden nodes. In particular, we show that the method
can be readily adopted to network systems whose nodal dynamics are not described
by continuous-time differential equations but by discrete-time processes such as
evolutionary-game dynamics. In such a case, the derivatives used for continuous-time
systems can be replaced by the agent payoffs. The cancellation factors can then be
calculated from data to differentiate the hidden nodes from local noise sources. We
also show that, under certain conditions with respect to the coupling patterns between
the hidden nodes and their neighboring nodes, the cancellation factors can be esti-
mated even when there are multiple, entangled hidden nodes in the network.
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12. Levnajić, Z. & Pikovsky, A. Network reconstruction from random phase resetting.
Phys. Rev. Lett. 107, 034101 (2011).

13. Hempel, S., Koseska, A., Kurths, J. & Nikoloski, Z. Inner composition alignment
for inferring directed networks from short time series. Phys. Rev. Lett. 107, 054101
(2011).

14. Shandilya, S. G. & Timme, M. Inferring network topology from complex
dynamics. New J. Phys. 13, 013004 (2011).

15. Wang, W.-X. et al. Time-series based prediction of complex oscillator networks
via compressive sensing. EPL 94, 48006 (2011).

16. Pan, W., Yuan, Y. & Stan, G.-B. Reconstruction of Arbitrary Biochemical Reaction
Networks: A Compressive Sensing Approach. 51st IEEE Conference on Decision
and Control. Maui, Hawaii, USA (2012, December 10–13).

17. Yuan, Y., Stan, G.-B., Warnick, S. & Goncalves, J. Robust dynamical network
reconstruction. Automatica 47, 1230–1235 (2011).

18. Mastromatteo, I., Zarinelli, E. & Marsili, M. Reconstruction of financial networks
for robust estimation of systemic risk. J. Stat. Mech. 2012, P03011 (2012).

ð13Þ

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 3944 | DOI: 10.1038/srep03944 6



19. Fagiolo, G., Squartini, T. & Garlaschelli, D. Null models of economic networks: the
case of the world trade web. J. Econ. Interact. Coord. 8, 75–107 (2013).

20. Musmeci, Nicol. et al. Bootstrapping topological properties and systemic risk of
complex networks using the fitness model. J. Stat. Phys. 151, 720–734 (2013).

21. Mastrandrea, R., Squartini, T., Fagiolo, G. & Garlaschelli, D. Enhanced network
reconstruction from irreducible local information. arXiv:1307.2104.

22. Caldarelli, G. et al. Reconstructing a credit network. Nature Physics 9, 125–126
(2013).

23. Su, R.-Q., Wang, W.-X. & Lai, Y.-C. Detecting hidden nodes in complex networks
from time series. Phys. Rev. E 106, 058701 (2012).

24. Candes̀, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory 52, 489–509 (2006).

25. Candes̀, E., Romberg, J. & Tao, T. Stable signal recovery from incomplete and
inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006).

26. Candes̀, E. Compressive sampling. in Proceedings of the International Congress of
Mathematicians. Madrid, Spain (2006).

27. Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
28. Baraniuk, R. G. Compressive Sensing. IEEE Signal Process. Mag. 24, 118–121

(2007).
29. Candes̀, E. & Wakin, M. An introduction to compressive sampling. IEEE Signal

Process. Mag. 25, 21–30 (2008).
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