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Background: One of the underlying assumptions of synthetic biology is that biological processes can be engineered in
a controllable way.
Results: Here we discuss this assumption as it relates to synthetic gene regulatory networks (GRNs). We first cover the
theoretical basis of GRN control, then address three major areas in which control has been leveraged: engineering
and analysis of network stability, temporal dynamics, and spatial aspects.
Conclusion: These areas lay a strong foundation for further expansion of control in synthetic GRNs and pave the way
for future work synthesizing these disparate concepts.
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INTRODUCTION1

Synthetic biology, since its flourishing in the early 2000s,
has undergone rapid advancement. The is due in a large
part to the promise that the field holds for such diverse
applications as bioenergy [1–3], personalized medicine
and therapeutics [4], bioremediation [5,6], and biophar-
maceuticals [7]. Paired with advancements in DNA
synthesis [8–10] and sequencing [11], the field has
grown exponentially in the last 15 years. This growth
has seen the development of new tools, such as the
implementation of the Cas9 protein for gene editing and
transcriptional regulation [12–14], to further plumb the
depths of our biological understanding and the applica-
tions thereof. In particular, advancements in synthetic
biology have allowed the study of gene regulatory
networks (GRNs) in a simplified setting amenable for
precise experimental controls [15,16].
Using a build-to-understand, bottom-up approach [17–

19], synthetic biologists can strip away much of the
complexity of highly interconnected natural biological
systems while studying gene regulation within an in vivo

[17,18] or in vitro system [20,21]. Synthetic networks
which function orthogonally to natural networks give
researchers more control over their behavior and avoid the
confounding effects of the many unknown genetic
interactions endemic to natural systems [22,23]. These
functional synthetic networks have been used to demon-
strate many fundamental biological processes such as
multiple stabilities [18,24,25], complex temporal behavior
[16,17,26,27], and rich spatial patterning [28–30]. Many
of these small functional networks, often referred to as
motifs, utilize positive or negative feedback topologies.
For example, bistable GRNs can be constructed either
through the use of two mutually inhibitory components
[18] or with self-activating components [25]. From these
small functional networks, great efforts have been made to
build up, combining multiple motifs into larger and more
complex networks [31–34]. In addition to realizing
immediate applications for complex synthetic networks,
engineered circuits also shed additional light on the
underlying mechanisms of biological regulation and
control [22,24]. For example, by constructing a symme-
trical circuit expressing two different fluorescent proteins,
Elowitz et al. demonstrated the existence of intrinsic and
extrinsic stochasticity within a cell [22]. While Wu et al.
illustrated impacts of such stochasticity on cell fate
determination using a synthetic toggle switch in yeast [24].
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Control of GRNs has been a constant research focus
and is of paramount importance to continued advance-
ment in synthetic biology. In its most abstract sense, GRN
control refers to methods by which researchers can
engineer, modulate, and predict robust network behavior.
In a physical sense, this entails proper selection of internal
and external factors which influence network behavior.
Internal factors function as a closed feedback control loop
within the cell and include the selection of cell type, GRN
topology and motifs, and specific components comprising
the GRN: promoters driving individual gene’s expression
[8,27], transcription factors modulating expression of
downstream genes [16,18], localization signals or syn-
thetic protein domains affecting protein interactions
[23,28,29], etc. Once put into the cell, many of these
components do not leave researchers with a direct means
of interaction. External factors form an open control loop
and are therefore easier to control throughout the course
of an experiment. These include factors such as growth
media composition [8,24,35], ambient temperature
[16,36,37], light exposure and wavelength [38,39],
magnetic fields [36,40], or small molecule inducers
which either bind surface receptors or permeate the cell
to cause changes in protein behavior [8,16,18,23]. A
crucial third component in GRN control is the theoretical
framework that describes the predictability of the system
and allows synthetic biologists to compose networks
toward a desired outcome, rationally select components to
achieve that outcome, and predict the parameters under
which that desired outcome is attainable [41–43].
In the following sections, we first examine in close

detail the theoretical basis of GRN control. We then use
this framework to inform discussion on three aspects of
GRN behavior: multi-stability, temporal dynamics, and
spatial relations. Each of these areas is further explored
with discussion of how the intrinsic and extrinsic
biological control factors relate to the theoretical frame-
work, problems faced in realizing these behaviors, and
examples and applications of the behavior to broader
aims.

THEORIES AND COMPUTATION OF CON-
TROL

The mathematical foundation of control theory has been
well developed for both linear and nonlinear dynamical
systems [44,45]. Its application to many biological fields,
especially systems biology, has produced progress in both
designing experiments and understanding results [46,47].
In synthetic biology, with its bottom-up design mindset,
the functional motifs are well isolated from the cellular
environment and thus provide better test platforms for
control theories in biology. However, there are several
challenges remaining in mathematically modeling and

predicting gene network functions: genetic networks are
often highly nonlinear, cellular environments and internal
kinetics are stochastic, and natural genetic networks can
have high dimensionality with unknown interconnectivity
between genes.
Several approaches have been taken in addressing GRN

nonlinearity. Ordinary differential equations (ODEs) are
frequently used to model deterministic systems with the
aim of obtaining a sketch of the underlying interactions
and the effect of varying parameters within these systems
[18,24]. The regulation of gene expression has often been
described in the form of nonlinear Hill equations [48].
Many theoretical approaches for analyzing nonlinear
GRNs [42,49,50] have borrowed from the large amount
of work that has been developed around linear control
theory [44,45,51]. These approaches have been adapted
into several network simplification methodologies. By
linearizing nonlinear Hill functions around an equibriumn
point, Shin et al. studied the transfer function for simple
GRNs and reproduced experimental results in continuous
models [42]. Liu et al. proposed a linear control theory for
large networked systems [49] and used it to analyze
minimum control inputs in metabolic networks [50].
However, most of these theoretical approaches still

cannot be directly applied to model and predict complex
behaviors of GRNs, and an ad hoc model based on ODEs
is still required for each specific system. After developing
a system of ODEs to describe a GRN, bifurcation analysis
is often employed to investigate how the network’s
deterministic behaviors change with system parameters.
This can reveal parameter regions of multistability and
phase transitions [23,24,51,52], as it is shown in Figure
1A. This is important for investigating networks which
can have multiple states, such as toggle switches which
can switch states in response to environmental stimuli
[18,26], and it can also be applied to oscillatory systems
[16]. This in silico method can be paired with hysteresis
analysis, an experimental design which is used to probe
dynamical systems without knowing their detailed
dynamical form or parameters [18,53,54]. Hysteresis
analysis involves performing experiments to investigate
the parameter space and its effect on system stability. It is
often paired iteratively with bifurcation analysis to further
develop the model to more accurately describe the system
in question [18]. Figure 1A demonstrates how the bistable
region can be identified by hysteresis analysis without
knowing exact system parameters.
ODEs and other deterministic methods have been

invaluable in many GRN analysis applications; however,
the strict determinism of these equations limits their
application to cellular behaviors influenced by stochasti-
city [55]. Stochastic simulation tools, including the
stochastic differential equation (SDE), cellular automata
(CA), potential landscape [56], and Gillespie algorithm
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(GA) [57] are used to simulate and study inherently noisy
processes within the cell [22,41,56]. Deterministic models
fail in situations in which there are several potential
outcomes from a common set of parameters and initial
conditions, such as the stochastic differentiation from an
undetermined state to one of two stable steady states
(SSSs) shown in Figure 1B. When the trajectories are
initiated from the separatrix dividing the two states’
energy wells [24], they differentiate into one or the other
population as a result of gene expression noise. The
resulting distribution can be predicted using Gillespie
algorithm. When the system’s gene expression is
perturbed by external stimuli, the overall expression
distribution amongst various attractor basins can be
quantified using SDEs or GA. Furthermore, the pseudo
potential landscape can be portrayed from the stationary
distribution, which provides better characterization of
system stabilities and state regulation behaviors for the
GRN [24,41], as shown in Figure 1C. The positions
together with the stabilities of all SSSs of a system can be
illustrated by the pseudo landscape. PDEs and GA can
describe the stochastic interactions between different cells
and simulate how the cell population is distributed in
space [30,56,58]. In their study of synthetic ecosystems,
Song et al. modeled the spatio-temporal dynamics of two
synthetic Escherichia coli populations using PDEs
[59,60]. On an intracellular level, GA (or the related
Monte Carlo simulation) is often used to simulate
stochastic fluctuations in transcriptional regulator num-
bers [24,61]. These types of simulations can be used to
determine likelihood of state transitions under varying

amounts of noise [52] or to thoroughly analyze the GRNs
potential landscape under a single noise condition [56].
Though synthetic networks are, thus far, limited in size,

understanding the regulation of cell differentiation and
state transitions within a natural system requires compu-
tational tools capable of dealing with large dimensionality
[62]. On one hand, researchers have tried to abstract the
large scale GRNs into different motifs with varying
functions [63]. They then tried to understand the
relationship between the motifs’ structure and cellular
behavior [17,18,64]. On the other hand, PDEs and CA
have also been applied to model gene expression
distribution over time of high dimensional systems. For
example, Wang et al. proposed a pseudo potential
landscape based on the equilibrium distribution in state
space of gene expression levels, and solved the
equilibrium distribution using a PDE model [56]. CA
models have been utilized to simulate complex stochastic
interactions between cells. These are used frequently in
tumor modeling, where individual cell behavior within a
group is highly dependent on its immediate neighbors and
environment rather than relatively simple chemical
gradients [65]. The primary drawback of CA models is
that they tend to consume large computational resources
[30].
Studying control problems in GRNs will generally

require the application of multiple theoretical tools at the
same time. One prominent example which has important
ramifications in many areas is how to control transitions
between different SSSs in gene expression space. This is
important in an area like cancer research, since cancer is

Figure 1. Mathematical frameworks for GRN Control. (A) Bifurcation diagram of the toggle switch controlled by the
concentration of ATc [26] and illustration of hysteresis analysis. The blue lines represent the SSSs under a range of ATc

concentrations, while the red line represents the unstable steady states. The black crosses are the predicted SSSs for the cell which
is first grown in media lacking ATc then transferred to media with variable ATc concentrations, while the red circles represent SSSs
for cells initially grown in high ATc concentrations (250 ng/mL). By performing hysteresis analysis, the bistable region can be
identified without knowing the system parameters, denoted as the area between the two dash lines. (B) Temporal trajectories

simulated using Gillespie algorithm for experiments in [24]. The black trajectories were initiated directly on the separatrix, while the
red and green ones were not. The inserted panel shows the resultant histogram for trajectories which began on the separatrix and
subsequently differentiated into two populations. (C) A pseudo potential landscape for systems with four SSSs, as shown in [41].

SSSs are represented by local minima within the parameter space, while the stability of any given state is represented by the depth
of the energy well relative to its neighbors.
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frequently characterized as cells which have fallen into an
unhealthy but stable gene expression state [66]. With
better control strategies, it may be possible to transition
these genes’ expression back to a healthy state via a novel
route: a different tactic from what current therapies
provide. To this end, Wang et al. used bifurcation analysis
to identify possible transitions paths between different
SSSs in multistable GRNs, and then suggested to model
the GRNs as a network of attractors to reduce its
dimensionality. Based on hysteresis analysis, they
proposed transient and sequential control signals to
navigate the state transition from an arbitrary cancer
attractor to a health attractor [41]. Separately, work has
been done on minimizing the effects of failed nodes
within a larger network and on determining the best
methods to limit large-scale cascading effects if single
nodes display anomalous behavior [67]. Finally, ongoing
progress has been made in developing frameworks for
understanding and controlling genetic regulation and
metabolic flux in complex biological networks [50].

MULTISTABILITY OF GRNs

Multistable systems can hold two or more stable gene

expression profiles, SSS, with the same set of parameters.
This ubiquitous property of natural systems allows
isogenic populations to express a range of behaviors in
response to their needs and environment [68]. In single-
celled organisms, this division of labor can lead to
increased population fitness. In bacteria, for example,
often a sub-population can enter a competent state in
which the uptake of foreign DNA is increased, allowing
the bacteria to increase genetic diversity [69]. Similarly,
some bacteria within a population may enter a state called
persistence, in which the cell becomes dormant [70]. If a
catastrophic event, such as contact with an antibiotic,
wipes out the colony, these persistent cells can remain
unaffected, thereby ensuring the colony’s survival [71]. In
multi-cellular organisms, the role of multistability is
primarily to allow the development of a multitude of
tissues from a single stem state [72].
Topologically, there are two general ways for a system

to achieve multiple SSSs: mutual inhibition and auto-
activation. In a mutually inhibitive GRN, the gene or
genes associated with one state actively repress the
expression of those associated with one or more
competing genes and vice versa [18,73], as seen in Figure
2A. Synthetic mutual inhibition circuits have been

Figure 2. GRN multistable behavior. (A) Schematic diagram and simplified schematic for the mutual inhibition toggle [18]. (B)
Another bistable circuit of autoactivation [74]. (C) Schematic diagram for two representative logic gates, the XOR and AND gates
reviewed by Singh et al. [75].
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demonstrated in multiple organisms [18,24,76], and
examples of similar topologies are rife in nature [68]. A
system can also express multistable behavior through
autoactivation [74]. As illustrated in Figure 2B, a single
gene can keep itself activated if its expression has passed
a certain threshold; below this threshold, however, the
gene remains inactive [77]. Self-activating motifs like this
tend to be noisy on their own, but they can also play a
stabilizing role to the expression of mutual inhibition
GRNs [35]. In addition to these two primary topologies,
multistability has also been shown to emerge from linear
networks as a result of circuit load and other interactions
affecting the growth rate of the host cell [78]. These host-
circuit interactions may play an increasingly important
role in future synthetic network design. From these basic
underpinnings, several control problems have come to
define the study of multistability.
First, researchers have sought to better understand and

control the proportionality of differentiation into various
SSSs. Wu et al., studied the effect of both internal and
external factors on differentiation into one of two states in
a synthetic yeast network [24]. Using a novel design
strategy, researchers positioned the cells’ expression near
the separatrix dividing the energy wells of mutually
inhibitive red-expressing or green-expressing states. The
stochastic process of gene expression then caused the
cells to gravitate towards either the red or the green state.
By changing the promoters driving the antagonizing
repressors, and by changing inducer concentrations to
alter the efficiency of those repressors, the percentage of
cells falling into each state can be tuned. Both methods of
controlling cell fate determination show how changing
the underlying energy landscape of a multistable system
can affect the behavior of the system itself. Ishimatsu et
al. built on this foundation, using gene overexpression to
force a bistable network into temporary monostability
[35]. By tuning overexpression, the single steady state
could be adjusted in state-space, and this adjusted location
became the new initial point from which the cells would
differentiate upon cessation of overexpression. By placing
the cell expression near the system’s separatrix, a tuning
of the population fraction in each state was observed,
similar to that demonstrated by Wu et al. [24].
This leads to a second area of study: how to control the

transitions between states in multistable systems. Bifurca-
tion analysis is a commonly employed method for
investigating the parameter space in which a system can
maintain multistability. On either side of the multistable
region there is a bifurcation point: a parameter value at
which one of the SSSs disappears or emerges. Using
transient chemical or thermal induction, Gardner et al.
showed that bistable networks could be switched between
states by temporarily forcing them out of the bistable
region [18]. Ellis et al. further demonstrated that the

transition time between states could be both predicted
mathematically and tuned through selection of different
promoters from a synthetic library in order to temporally
control the flocculation of yeast [26]. Unlike purely
stochastic cell fate determination process used to tune
population percentages, these experiments showed that
full populations’ expression could be controlled essen-
tially deterministically with a high degree of accuracy,
accounting for both expression levels and transition times.
Related to both of these areas of study is the control of a

system’s multistable region itself. Multistability generally
occurs only within a small range of parameter and
induction values. To engineer robust networks, expansion
of multistable regions is crucial. This is partially
determined by the network topology and relies on proper
selection of network components. Using a library of
synthetic promoters, it has been shown that the same
topology can yield bistable regions responding to low,
mid, or high levels of induction [24]. Additionally, the
regulatory proteins used have a profound effect on
hysteresis behaviors. In an autoactivation network, Wu
et al. demonstrated that different pairs of activator and
chemical inducers produced different bistable regions
[23]. Interestingly, it was also demonstrated that pairing
poorly interacting inducer/activator pairs — due to
quorum sensing (QS) crosstalk in this instance —
yielded an expanded toolbox of parts with a range of
bistable regions to choose from.
As the physical construction of multistable networks

has expanded, so too has the investigation of the
theoretical underpinnings of stability. A large amount of
in silico work has been dedicated to understand the
topological basis of multistability. For example, Yao et al.
identified a minimal circuit to generate bistability from a
simplified Rb-E2F network which regulates the initiation
of DNA replication [79]. Faucon et al. looked for
instances of possible ways in which a three-gene network
could exhibit multistability [52]. Additional work has
been done to demonstrate the role that small motifs play in
enhancing network stability [80].
Studies such as this focus on both how to attain

multistability as well as on quantifying how stable the
discovered multistable states are. Quantification of the
stability of an energy well is still an evolving field, and
stochastic simulations are often applied to determine how
likely a cell is to jump out of a given SSS due to inherent
noise.
Finally, there are also stationary synthetic circuits that

are not multistable but have multiple outputs and can be
used to control and integrate environmental and cellular
signals. By layering multiple feedback systems, research-
ers have created digital logic gates, as reviewed in
[32,33,75]. Researchers have demonstrated the ability to
engineer AND, OR, NOR, XOR, NOT, and NAND gates
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in multiple organisms [34,75,81–83]. Two examples of
such logic gates are shown in Figure 2C. However, with
increasing complexity comes increasing design con-
straints. Synthesis of two or more inputs can require
engineering of new synthetic promoters capable of
interacting with multiple proteins, and layered circuits
require that upstream gene expression be clear enough
that the signal translates into downstream expression.
Regulator crosstalk can become a problem, as more parts
are added to a circuit. Wu et al. designed an orthogonal
AND gate in E. coli and studied the effects of regulators’
crosstalk in autoactivated quorum sensing circuits [23].
The effect of integrating multiple module layers can be
even more unpredictable, so additional design principles
from engineering of digital control systems, such as
timescale separation, have been introduced to overcome
these obstacles. Mishra et al. designed a genetic device
called the “load driver” to mitigate the interference
between different genetic modules in Saccharomyces
cerevisiae [84,85].

TEMPORAL DYNAMICS OF GRNs

While gene network stability is important for develop-
mental processes, cell differentiation, and population
fitness, dynamic temporal behavior is equally relevant to
sustained biological processes. For instance, many
cellular processes are informed by the oscillatory
dynamics of the cell cycle [86] or by the daily circadian
rhythm [87]. Additionally, certain sensory inputs are
subject to the phenomenon of adaptation, in which a
stimulatory signal has a reduced effect if introduced

repeatedly within a short period [88]. Relatedly, a large
amount of intercellular signaling is due to temporal bursts
of activity, as seen in neuronal spiking [89] and the
subsequent release of regulatory neurotransmitters [90].
To be able to engineer biological processes effectively,
researchers need to be able to control the time scales
together with the stabilities of these types of behaviors by
utilizing internal and external control methods.
Oscillators were some of the earliest dynamic synthetic

GRNs [17]. Most instances of oscillation have been
shown to arise from two primary topologies: a three-node
negative feedback loop known as the represillator [17,27]
and a two-node network comprised of one autoactivator
and one repressor [16] (see Figure 3A and 3B). In both
topologies, the oscillator relies on two kinetic elements:
negative feedback and a delay which grants enough time
for one gene to turn on before being turned off by an
antagonizing gene. To this end, control of oscillatory
GRNs relies on tuning the negative feedback loop and/or
the regulation duration, thus selection of GRN compo-
nents and external regulators which alter degradation,
production, and regulation kinetics play an important role
in producing the desired oscillatory behavior. Much
research has been done to modulate the frequency,
stability, and synchronization of oscillations within a
large population [16,17,27,91].
The negative feedback is the most critical component

for generating oscillations. Since the kinetics associated
with feedback loops can be described by nonlinear ODE
functions, possible approaches to control the oscillatory
behavior can be analyzed and predicted using bifurcation
analysis across a range of parameters. Changes in

Figure 3. GRN temporal behavior. (A) Simplified illustration and schematic diagram of the represillator from [17] and [27]. The
three nodes A, B and C jointly form a negative feedback loop. (B) Simplified illustration and schematic diagram of the two-node
oscillatory network [16] with autoactivation on node A. The negative feedback strength can be controlled by the concentration of

IPTG which regulates the repression strength from node B to A.
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parameters can be caused by altering production effi-
ciency of network genes, regulation strength between
genes, concentration of inducers, and environmental
conditions. As with multistability, bifurcation analysis
can be utilized in conjunction with oscillatory network
models to determine parameter ranges at which one is
likely to observe oscillation, and it can give insight into
the range and frequency of the expected fluctuations
[92,93]. For examples, Stricker et al. introduced auto-
activation into the negetive feedback circuit which
enhanced the production activities in node A (See Figure
3B ). Also, by changing the concentration of IPTG, which
inhibited the repression of node A by node B, the
regulation of negative feedback was be modulated,
allowing further control of the oscillatory periods. It
was also shown that the oscillatory period decreased when
the temperature was increased due to a decrease in cell
doubling time [16]. Additionally, together with the
frequency, the ampitude of oscillations can also be
controlled with relative plasmid dosage changes in
mammalian cells [91]. The negative feedback loop can
be extended to intercellular processes with the help of QS
genes, which produce diffusible signaling molecules, and
further achieve synchronization within a population. This
sort of synchronization behavior has been modeled
synthetically in bacteria [16], and it is a first step toward
engineering large scale oscillation synchronization, an
important aspect of multicellular life.
Time delay within the feedback loop is another critical

element that generates oscillatory behavior in GRNs. A
sufficiently long delay has been numerically demon-
strated to be one of the required conditions to generate
oscillations from a single autoinhibitory gene [94]. The
time delay in the feedback loop arises from finite
interactions and production time in stochastic gene
expression and can be highly noisy, so the effect of
delays needs to be analyzed via stochastic simulation
tools. There are many ways to extend or shorten the delay
to further control the period and robustness of oscillation.
In their pioneering work of synthetic oscillatory GRNs,
Elowitz et al. synthesized three cascading repressors into
a represillator [17] and extended the delay duration by
introduction of additional cascading processes. Genomic
structure can also affect the delay; Swinburne et al.
engineered oscillatory GRNs in animal cells and found
that longer introns, which require longer production time,
can increase the transcriptional delays, thus generating
longer expression pulses [95]. The delay duration will
also affect the stability of resulting oscillations. Potvin et
al. reduced the delay in the original represillator by
choosing low copy plasmids and thereby generated more
stable oscillations while maintaining a minimal topology
[27].
Another biologically relevant temporal behavior is that

of spiking. This can be seen in neural signaling or in the
response to certain sensory inputs, in which an external
stimulus causes a short burst of activity before the system
returns to a resting state. Adaptation is a dynamic
behavior in which an extracellular signal causes the
temporary excitation of a GRN which eventually returns
to its basal level despite the signal’s continuation [64]. Ma
et al. exhaustively identified all possible three node GRNs
topologies that can generate adaptation signals, and they
found that the precision and sensitivity of adaptation can
be independently modulated by tuning the system’s
parameters. Unlike oscillations, adaptation does not rely
on a bifurcation for the desired behavior to appear; rather,
it is a result of temporary perturbation of an otherwise
stable network. Alternatively, spiking signals of neural
systems exist in networks which operate close to a
bifurcation point, so small environmental cues can push
the cell into a region of either random or periodic spiking,
depending on the network topology [96].

SPATIAL ASPECTS OF GRNs

In addition to the multistability and temporal aspects of
GRNs, another active area of synthetic biology research is
the exploration of the spatial properties of complex
networks. Organization of individual cells into population
wide patterns is a common behavior found throughout
nature [28,97] and biomedical applications [29,98]. There
are many open questions in controlling GRN regulated
spatial patterns. In lower organisms, there have been two
primary foci in exploring GRN spatial properties: pattern
formation and population density control [97]. Besides
their biological significance, synthetic GRNs in bacteria
also serve as platforms to study how the cells commu-
nicate with each other and respond to the environmental
signals. In higher organisms, the primary thrust in
studying spatial patterning has been to better understand
tissue and organ development [98]. Understanding how
this emergent behavior can be engineered and controlled
can lead to a better understanding of developmental
processes, cellular signaling and signal processing
paradigms, and construction of complex behavior from
simple components.
Typically, synthetic GRN directed pattern formation

requires three basic functional modules: a mechanism to
send signals, a way to receive extracellular signals, and
cellular actions responding to signals. Since spatial
distribution and patterning is a population-wide phenom-
enon, intercellular signaling is required. It has been
demonstrated by using QS genetic components [97] that
bacterial populations can be engineered to form patterns
in response to extracellular concentrations of acyl-
homoserine lactones (AHLs), a class of signaling
molecules used by QS [28]. Once received, the signal is
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then processed into a stable output phenotype or behavior,
typically through a negative feedback topology. When the
signal is being processed by the synthetic GRNs the cells
can respond by utilizing one or more mechanisms of cell
movement [29], proliferation, and/or death [99,100] in
order to form the intended patterns.
The control schemes used in cell-cell communication

involve how the specific intercellular regulator molecules
are added to the system (external addition or internally
produced by the GRN) [28]. By controlling the local
concentrations AHL, Basu et al. used programmed
synthetic GRNs to form different pattern shapes. They
employed co-cultures of engineered sender and receiver
cells. The sender cells were designed to synthesize AHL
under user defined gradients, while the receiver cells were
engineered to operate like a bandpass filter. By placing
sender cells in different configurations, through their
fluorescent outputs the engineered cells jointly expressed
different shapes such as a bullseye, ellipse, heart, and
clover. Important control variables within the network
topology and genetic components used are also widely
studied. There are currently two types of underlying
GRNs that can sense environmental signals. One type of
GRN, such as that in Figure 4A, senses morphogen
gradients and expresses weaker with increasing distance

from the region of highest concentration [28]. Conversely,
Payne et al. developed a novel pattern formation schedule
in E. coli equipped with intracellular autoactivation and
intercellular negative feedback motifs, shown in Figure
4B [30]. By employing this mechanism, the pattern scale
could self-organize into intended patterns without reliance
on a morphogen gradient. The pattern could also be
controlled by biological processes. Payne et al. discussed
that the metabolic burden caused by the activated
synthetic circuit could actually enhance the pattern
robustness [30]. Liu et al. demonstrated control of the
mobility of cells and further achieved periodic striped
patterns, using the circuit shown in Figure 4C [29]. They
synthesized a LuxR/LuxI module to synthesize and
excrete AHL when the cell density was high, which in
turn further activated expression of LuxR. Additionally,
the LuxR-AHL complex drove the expression of lambda
repressor and further regulated CheZ expression, so as to
reduce the mobility of the E. coli. Integrating many of
these concepts— feedback and feedforward motifs,
intercellular communication, and nutrient consumption—
Cao et al. showed that scale-invariant patterns could be
produced [101]. This is of crucial importance for
understanding development in higher organisms and a
clear frontier in GRN construction.

Figure 4. GRN spatial behavior. (A) Schematic diagram of the sender-and-receiver GRNs from [28]. The sender cells (left) were
placed in the middle of the environment and contain a different GRN than the receivers , which surround the sender cells (right). AHL
secreted by the sender cells has a concentration gradient depending on the distance from the sender cells, and it controls the
response of the feedforward loop in the receiver cells (bottom). (B) Schematic diagram of circuit in [30]. The activation subunit forms

an auto-activation circuit, as shown in the green box. The other portion of the GRN secretes AHL into the medium, which can diffuse
back into the cell and induce inhibition of the sub-circuit of activation (outside the green box). (C) Schematic diagram for the mobility
control GRNs in [29]. The upper layer is the quorum-sensing module which can secrete AHL into the environment, while the lower

layer is the mobility control module which senses the AHL concentration and regulates the mobility of cells. High mobility will reduce
the cell population density.
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A similar application of pattern formation is to control
population density. When bacteria are used for biopro-
duction applications, it may be beneficial to halt cellular
growth to force the population to focus on producing the
molecule of interest [102]. While pattern formation work
has primarily taken place in bacteria plated in a dish,
density control work seeks to understand and control the
requirements for adjusting growth behavior in liquid
culture. Similar topologies have been employed: cells
were modified with LuxR/LuxI QS together with CcdA/
CcdB toxin/antitoxin systems to study population density
and individual fitness [102]. QS can also be controlled by
changing the specific QS regulators employed, consider-
ing any crosstalk which might occur between QS
components. Wu et al. demonstrated the important role
that crosstalk between signaling molecules and transcrip-
tional regulators (signal crosstalk) or between regulators
and promoters (promoter crosstalk), as well as the overall
expression intensity of QS components as determined by
each component’s promoter, can play in a synthetic
system [23]. They also found that such regulation and
crosstalk may induce novel host-circuit interaction in the
QS system of LuxR/LuxI and LasR/LasI, and can be
engineered to generate varying population dynamics.

CONCLUSION

There is much room for expansion in each of these areas,
as synthetic biology is still very much a field in its infancy.
Looking forward, there are several directions in which
this work could be expanded. Topologically, GRN
construction has primarily focused on using proteins to
perform major functions. As we come to understand a
wide variety of cellular regulatory mechanisms, we will
likely see use of a more diverse set of cellular
components. This is already the case with the rise of
CRISPR technology, which uses RNA to guide circuit
interactions; however, there are still major limitations in
interfacing protein and RNA components in a single
network. Beyond CRISPR, the toolbox may also be
expanded to include other regulatory such as epigenetic
marks like phosphorylation, methylation, and acetylation
[103,104]. This could conceivably prepare the field to
integrate chromatin interactions to stabilize desired
behaviors, improving robustness in increasingly complex
GRNs.
In addition to expanding the component toolbox,

moving from proof-of-concept GRNs to development of
networks for applications is likely in the near future for
this field. Whether used for biosynthesis applications,
understanding aberrant developmental processes, clinical
diagnostics, or targeted genetic interventions, improved
knowledge surrounding GRN control is sure to make an
impact.

Control of GRNs in synthetic biology is a quickly
expanding field covering all types of network behavior.
Here we have provided examples of pioneering work on
four key aspects of GRN control: its theoretical basis,
stability analysis, temporal dynamics, and spatial dis-
tributions. Each aspect holds promise on its own and can
be expanded into more complex, robust, and diverse
applications. Beyond this, however, synthesis of these
aspects of GRN control also promises powerful new tools
for understanding and interacting with developmental
processes, which innately possess multistable, temporal,
and spatial properties.
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