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SUMMARY

Polycistronic architecture is common for synthetic
gene circuits, however, it remains unknown how
expression of one gene is affected by the presence
of other genes/noncoding regions in the operon,
termed adjacent transcriptional regions (ATR).
Here, we constructed synthetic operons with a re-
porter gene flanked by different ATRs, and we found
that ATRs with high GC content, small size, and low
folding energy lead to high gene expression. Based
on these results, we built a model of gene expression
and generated ametric that takes into account ATRs.
We used the metric to design and construct logic
gates with low basal expression and high sensitivity
and nonlinearity. Furthermore, we rationally de-
signed synthetic 50ATRs with different GC content
and sizes to tune protein expression levels over a
300-fold range and used these to build synthetic tog-
gle switches with varying basal expression and de-
grees of bistability. Our comprehensive model and
gene expression metric could facilitate the future en-
gineering of more complex synthetic gene circuits.

INTRODUCTION

Gene circuit engineering as one of the foundation technologies

has helped start the burgeoning development of bacterial syn-

thetic biology. Based on a large collection of well-characterized

biological components, including promoters, ribosome binding

sites, transcriptional factors, terminators, RNA elements, and

other small modules, complex gene circuits with designed func-

tions can be wired using established biological principles. Tog-

gle switch and repressilator are two of the earliest examples of

engineered gene circuits (Elowitz and Leibler, 2000; Gardner

et al., 2000). Now synthetic biologists are paying increasing

attention to develop innovative gene circuits for spatial pattern

formation (Cao et al., 2016; Liu et al., 2011), drug development

(Smanski et al., 2016; Wright, 2014), pathogen detection (Pardee

et al., 2014, 2016), in vivo delivery (Din et al., 2016), and other

biotechnological applications, including nitrogen fixation (Mus
206 Cell Systems 6, 206–215, February 28, 2018 ª 2018 Elsevier Inc.
et al., 2016; Wu and Wang, 2015) and environmental bioremedi-

ation (Zhang and Nielsen, 2014).

Currently, circuit assembly has two main strategies: one is

monocistronic construct, in which one promoter drives one

gene expression and ensures each gene is being expressed

independently; the other is polycistronic construct, in which

one promoter transcribes multiple genes (operon) into a single

mRNA but is translated into individual products (Figure 1A).

Operon, a cluster of genes with functional associations under

control of a single promoter, is a common type of genome or-

ganization in prokaryotic cells and is also widely found in eu-

karyotes and viruses (Rocha, 2008). This operon organization

strategy, here mainly referring to the genes’ order and position

downstream of the promoter in an operon, ensures coordi-

nated gene expression and regulation and enables bacteria

cells to rapidly respond to environmental changes. In synthetic

biology, this organization (synthetic operon) facilitates rapid

construction of genetic cascades and decreases the number

of biological components (such as the promoters and termina-

tors) required for complex genetic circuits, and therefore is

widely used in circuit engineering (Ma et al., 2016; Lee et al.,

2016; Farasat et al., 2014; Cameron and Collins, 2014; Prindle

et al., 2014; Yang et al., 2014; Litcofsky et al., 2012; Wu

et al., 2017).

However, it remains unknown whether/how gene expression

is affected by immediately adjacent genes in a polycistronic

operon. Two previous reports have indicated that gene position

and transcriptional distance can affect gene expression in a syn-

thetic operon (Chizzolini et al., 2014; Lim et al., 2011). But little

research has systematically studied the effects of adjacent

genes in synthetic operons on the circuit’s gene expression,

dynamics, and functionality. This factor is more prominent for

synthetic operons containing a cluster of genes and complex

multi-layered genetic circuits. Deciphering the effects of adja-

cent transcriptional region (ATRs) on gene expression would

advance our understanding of determinants of gene expression

in synthetic circuits and accelerate circuit design and assembly.

Such effect has been generally neglected during engineering of

synthetic gene networks, leading to unexpected circuit perfor-

mance or failure (Brophy and Voigt, 2016; Carr et al., 2017;

Yeung et al., 2017). Hence, development of a predictive method

to evaluate each gene’s expression level in a circuit would be of

great importance to circumvent the need for trial and error in cir-

cuit design and assembly.
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Figure 1. Protein Expression Is Significantly

Influenced by Its Adjacent Genes and Posi-

tion in Synthetic Operons

(A) Illustration of the operon structure and gene

expression. The three structural genes are tran-

scribed as a polycistronic mRNA but translated

into individual proteins. P, promoter; O, operator.

Yellow oval, ribosome.

(B) Top: Schematic representation of synthetic

bicistronic gene circuits with gene X and GFP.

Gray arrow, constitutive promoter; orange oval,

ribosome binding site; red hexagon, transcrip-

tional terminator. Bottom: Flow cytometry results

show GFP expression is influenced by its 50ATRs.
X represents a gene name (i.e., LuxI, AraC, TetR,

RhIR, and dnMyD88). ‘‘Control’’ is without X gene

in the circuit. Rectangles with filled colors repre-

sent different genes. Data represent the mean ±

SE of eight replicates.

(C) Relative GFP mRNA concentrations (normal-

ized to 16S rRNA control) for the circuits in (B)

determined by RT-qPCR. Primer pair P1:P2 was

designed to amplify GFP gene from the sample

cDNA.

(D) Top: Schematic representation of synthetic

bicistronic gene circuits with gene X and GFP, but

with switched positions in the circuit. Gene posi-

tion in the operon affects GFP expression.

Data represent the mean ± SE of eight replicates.

*p < 0.05, **p < 0.001, and ***p < 0.0001 by Stu-

dent’s t test.
To quantify the effects of ATRs on gene expression, here we

systematically analyzed the effect of adjacent genes and non-

coding regions on GFP expression levels through construction

of �120 synthetic gene circuits (operons) in Escherichia coli.

Data-driven analysis yields a new protein expression metric

that strongly correlates with the features of ATRs including GC

content, size, and stability of mRNA folding near ribosomal bind-

ing sites (RBS). We demonstrated this metric’s utility in evalu-

ating relative expression levels of genes by incorporating it in

the design and construction of logic gates with lower basal

expression and higher sensitivity and nonlinearity. Furthermore,

we designed synthetic 50ATRs to tune protein expression levels

over a 300-fold range. Finally, by combining ATR regulation and

mathematical modeling, we illustrated the application of syn-

thetic ATRs in quantitatively tuning nonlinear dynamics of bista-

ble gene networks.

RESULTS

Protein Expression Is Influenced by Adjacent Genes and
Position
To examine whether protein expression is affected by its neigh-

bors in a polycistronic setting, we first constructed a two-gene

operon (gene X and GFP), which is driven by a constitutive pro-

moter (Figure 1B). Flowcytometry results showed that for different

X, GFP expression varies significantly. Specifically, circuits with

AraC and RhIR as X showed a comparable level of GFP fluores-

cence with the control (without X gene), while the others (LuxI,

TetR, and dnMyD88) showed high expression variations, ranging
from 6-fold to over 120-fold decrease comparedwith control (Fig-

ure 1B). Membrane protein dnMyD88 shows the most significant

influence on its neighbor GFP expression. On the other hand,

RT-qPCR measurements of transcripts of GFP showed much

smaller variations of mRNA concentrations between different cir-

cuits, for P1:P2 (GFPN-terminal) or P3:P4 (GFPC-terminal) primer

pairs (Figures 1C and S1A–S1C). So the variation of mRNA con-

centrations for each construct is insufficient to explain the fluores-

cence differences, which is in agreement with previous studies

that protein and mRNA copy numbers in E. coli cells are uncorre-

lated (Lim et al., 2011; Taniguchi et al., 2010).

Next, we further investigated the influence of a gene’s position

on its expression. As shown in Figure 1D, higher GFP expression

is observed when GFP is arranged distal to the promoter for the

bicistronic constructs that X gene is RhII, AraC, or LacI, while

there are cases showing a similar level of GFP fluorescence

(LuxR) or higher (LuxI) when GFP is arranged right downstream

of the promoter. Results from tricistronic constructs also indicate

that GFP expression is varied for different positions in the circuit

and adjacent genes (Figures S1D–S1G). Moreover, for different

Xs with the same position, GFP shows substantial variations,

consistent with results shown in Figure 1B. Altogether, these re-

sults demonstrate that a gene’s sequence and position in op-

erons have an effect on the expression of adjacent genes.

Quantitative Characterizations of ATR Effects on
Synthetic Operons
To quantify the impact of ATRs on protein expression, we de-

signed and constructed �80 circuits with different neighbor
Cell Systems 6, 206–215, February 28, 2018 207



protein-coding genes and varying sizes (X and Y) to cover a

wide range of GFP gene position and neighbor features (GC con-

tent, size, and mRNA secondary structure). These genes are

commonly used in synthetic biology, including transcriptional

factors, quorum-sensing components, and other functional

genes (Table S1). To ensure experimental consistency, all cir-

cuits were constructed using the same constitutive promoter,

RBS, terminator, and expression vector.

First, GFP was arranged to the distal end of synthetic bicis-

tronic and tricistronic operons, and the DNA sequence starting

from the transcription start site after the promoter to the begin-

ning of the RBS of GFP is denoted as 50ATRs (Figure 2A). Log

transformation was applied to the original data because of its

large variability ranging from 21,000 to 1,900,000 (GFP fluores-

cence, arbitrary unit) and inconstant variance (STAR Methods).

GFP expression increased with the total 50ATRs GC content,

while 50ATR length had a negative effect on GFP expression.

Sliding window analysis of 50ATR GC content suggested that

the GC content of the whole 50ATR has the highest fitting effi-

ciency (Figure S2A). We hypothesize that high GC content could

increase total mRNA stability, while a long transcription process

could decrease the probability of complete GFP transcription/

translation and increase the probability of degradation. In addi-

tion, previous studies reported that RNA secondary structure

near the RBS influences a gene’s expression, so local folding en-

ergy from the�70-nt to +38-nt region around GFP’s RBS (GFP’s

translation starting site is denoted as +1) was calculated. Consis-

tent with previous reports (Kudla et al., 2009; Mao et al., 2014;

Tuller et al., 2010), our analysis also shows that GFP expression

is significantly correlated with folding energy around the RBS of

GFP (Figure 2A and Table S2).

Next, GFP was placed in the middle of the operon, and the

sequence between the stop codon of GFP and the transcrip-

tional terminator is denoted as 30ATR. We found that 50 ATR
GC content (positive impact) and local mRNA folding free energy

(negative impact) have the most significant impacts on GFP

expression, and 30ATR GC content has a small contribution to

GFP variations in this case (Figure 2B and Table S2). Finally, cir-

cuits with GFP engineered proximally to the promoter were also

constructed and investigated to probe the relationship between

GFP expression and its 30ATR. Similarly, results show that 30ATR
GC content and size have a positive and negative relationship

with GFP fluorescence, respectively (Figure 2C and Table S2).

Sliding window analysis further revealed that the GC content

of the first 100 nt of 30ATR has the highest fitting efficiency,

suggesting the rear 100 nt is important for GFP expression

(Figure S2B).

Noncoding DNA sequences make up about 12% of the bacte-

rial genome and play important roles in the regulation of gene

expression and metabolism (Ahnert et al., 2008; Oliva et al.,

2015). To investigate whether noncoding sequences would simi-

larly affect adjacent gene expression in synthetic operons, we

engineered 32 synthetic circuits with 32 genes (Table S1), which

are placed immediately downstream of the promoter without

RBS to greatly limit their translation (Figure S2C). Our results

showed a strong relationship between GFP expression and non-

coding 50ATR GC content, size, and local mRNA folding energy

(Figure 2D and Table S2). Higher GFP expression was observed

for circuits with the same genes with RBS than those without
208 Cell Systems 6, 206–215, February 28, 2018
RBS (Figure S2D), suggesting the RBS of 50ATR may be impor-

tant for mRNA stabilization and expression efficacy.

Altogether, these results offer direct evidence that adjacent

coding and noncoding DNA fragments affect gene expression

in synthetic operons, and ATR GC content has a positive corre-

lation with GFP expression while ATR size and local free energy

are both negatively correlated.

Comprehensive Model of ATR Regulation
Our results revealed that gene expression in operons is affected

by the sequence features of its adjacent genes and local mRNA

secondary structures. The explicit mechanism of these effects

remains elusive. We employed the same promoter, RBS, vector,

and host cell for all the circuits to minimize the impact of tran-

scription on protein expression variation. And there is a lack of

complicated post-translational modifications in E. coli, so we

believe that the ATR alters the secondary or tertiary structures

of mRNA locally and/or globally, which perturbs the GFP

mRNA translation and degradation process (Figure 2E). The

GC content of 50 and 30 ATRs has a positive relationship with

GFP expression (Figure 2). After the RBS is transcribed, ribo-

some and RNase competitively bind to mRNA (Chen et al.,

2015a; Mackie, 2013). So we infer that a GC-rich 50 and 30ATR,
which is likely to have a more stable secondary structure (Emory

et al., 1992; Selinger et al., 2003), could help stabilize the GFP

transcript and decrease the risk of degradation by RNase, and

thus result in higher GFP expression. On the other hand, the

50 and 30 ATR sizes are negatively correlated with GFP expres-

sion (Figure 2). Longer ATR may lead to lower mRNA stability

due to the increased probability of elongation pausing and

degradation of RNase. Moreover, the local mRNA folding energy

near GFP’s RBS (nt�70 to +38) is believed to have an impact on

the translation initiation of GFP (Kudla et al., 2009; Mao et al.,

2014; Tuller et al., 2010). Overall, our statistics analysis revealed

that 50ATR GC content is the most important variable in the

regression models for the X-GFP circuit (Figure 2A, partial R2 =

0.44, Table S3) and X-GFP-Y (Figure 2B, partial R2 = 0.51),

whereas 30ATR size has a bigger role in the model ofGFP-X (Fig-

ure 2C, partial R2 = 0.58, and Table S3). This result suggests that

gene expression may be more easily modulated by the GC con-

tent of its 50ATR and the size of 30ATR.
To explore the possible mechanistic basis of ATR regulation

and make quantitative predictions, we developed a comprehen-

sive linear model integrating the three scenarios in Figures

2A–2C. The biophysical model was based on previous pioneer

work characterizing the relationship between free energy

changes and protein translation initiation (Salis et al., 2009; Serra

and Turner, 1995; de Smit and van Duin, 1990; Xia et al., 1998).

We next developed a comprehensive model to explore the

possible mechanistic basis of ATR regulation. The model builds

on measurements of sequence-dependent energetic changes

during polycistronic mRNA folding and translation. The energetic

changes correspond to the translation efficiency and protein

abundance (c).

cfexp
�
�
X

bx DGx;

�
; x = 1;2;3;.

whereDG is the energy term and b is the scaling coefficient (Salis

et al., 2009). For a given gene in an operon, the size of 50 and 30



G
FP

 (l
og

10
, a

.u
.)

3.5

4.5

5.5

6.5

G
FP

 (l
og

10
, a

.u
.)

3’ATR GC Free energy (-log10)

3’ATR GC (100 nt)G
FP

 (l
og

10
, a

.u
.)

3’ATR size (log10)

A

B

C

X GFP
X Y GFP

5’ATR GC

5’ATR GC

Free energy (-log10)5’ATR size (log10)

-1.4 -1.3 -1.2 -1.1

X GFP Y

GFP X
GFP X Y

X GFP
D

E

mRNA folds into 
complex structures 

Proteins

RNase and Ribosome
competitively bind to mRNA

mRNA local 
secondary 
structure

5’

5’

RNA polymerase

Ribosome

RNase

3’

ATG

i nt j nt

5’ 3’

L nt

+1

∆G5’ATR ∆G3’ATR
*∆G-70~+38

F

 Observed GFP (log10)

P
re

di
ct

ed
 G

FP
 (l

og
10

)

3.5 4.5 5.5 6.5
3.5

4.5

5.5

6.5

N = 266
R2 = 0.67 
P<0.0001

3.5 4.5 5.5 6.5
3.5

4.5

5.5

6.5

N = 632
R2 = 0.63 
P<0.0001

X-GFP
X-GFP-Y
GFP-X

2.6 2.8 3 3.2 3.4 -1.4 -1.3 -1.2 -1.1 -1

R2 = 0.25
P<0.0001

R2 = 0.28
P<0.0001

0.3 0.4 0.5 0.6

X-GFP
X-Y-GFP

N = 35
R2 = 0.43
P<0.0001

R2 = 0.50
P<0.0001

0.3 0.4 0.5 0.6

R2 = 0.04
P<0.01

0.3 0.4 0.5 0.63.5

4.5

5.5

6.5 N = 20
R2 = 0.49
P<0.0001

3.5

4.5

5.5

6.5

0.3 0.4 0.5 2.6 2.8 3 3.2 3.4

R2 = 0.58
P<0.0001

N = 24
R2 = 0.37
P<0.0001

5’ATR GC 5’ATR size (log10) Free energy (-log10)G
FP

 (l
og

10
, a

.u
.)

R2 = 0.16
P<0.0001

-1.4 -1.3 -1.2 -1.1 -1

R2 = 0.28
P<0.0001

2.6 2.8 3

N = 29
R2 = 0.15
P<0.0001

0.3 0.4 0.5 0.63.5

4.5

5.5

6.5

GFP-X
GFP-X-Y

Figure 2. Quantitative Characterization of Adjacent Gene Regulation in Synthetic Operons

(A) Scenario 1: GFP is arranged distal to the promoter. Top: Schematic representation of synthetic polycistronic gene circuits X-GFP. X and Y represent different

gene names. Bottom: GFP expression is significantly affected by its 50ATRs’ GC content, size, and local folding free energy. 35 genetic circuits with one or two

genes placed in front of GFP, which are labeled with different symbols in the regression results. The red lines are the linear regression results from the data. Error

bars are the SD of eight measurements performed in three different days. Coefficients with SE and equations can be found in Table S2.

(B) Scenario 2: GFP is placed in the middle of the three-gene operons (X-GFP-Y). GFP expression is significantly correlated with its 50and 30 ATR GC content and

local folding free energy. 20 circuits with different X and Y gene combinations were constructed.

(C) Scenario 3: GFP is placed proximal to promoter (GFP-X). GFP expression is significantly affected by its 30ATR GC content and size. 24 circuits with different

30ATRs were constructed, and different symbols are used to indicate bi- or tricistronic constructs in the regression results.

(D) Investigation of noncoding ATR regulation on GFP expression. X gene would not be expressed owing to a lack of RBS. GFP expression is significantly

correlated with 50ATR GC content, size, and local folding free energy. 29 circuits with different X genes were constructed.

(E) A comprehensive model for ATR regulation on protein expression. Top: Co-transcriptional translation and degradation. After RBS is transcribed, RNase and

ribosome competitively bind to mRNA to initiate translation or degradation. Generally, gene expression is influenced by overall stability and local secondary

structure. Bottom: Illustration of the five variables in the model: DG50ATR, DG30ATR_100, DG-70~+38, and transcriptional sizes (i, j). �70 and +38 correspond to the

position of the start codon (AUG) of the gene of interest.

(F) Left: Experimentally observed GFP expressions are plotted against the GFP values predicted by the coding ATR model with the five statistically significant

energetic terms and fitted coefficients. If the model predicted values and experimentally observed values agreed perfectly (R2 = 100%), all the data points would

fall on the dotted diagonal line of the squares. N is the total measurements for the 79 circuits. Dots with different colors indicate the data source from the three

scenarios in (A–C). Right: Experimentally measuredGFP fluorescence is plotted against theGFP expression predicted by the noncoding ATRmodel with the three

statistically significant energetic terms (DG50ATR, i, and DG-70~+38).
ATRs is denoted as i nt and j nt, respectively (Figure 2E). Themin-

imum free energy of the local GFP mRNA secondary structure

around the RBS is DG-70~+38. The entire folding energy for

50ATR is DG50ATR. The GC content of the first 100-nt 30ATR has
the highest fitting efficacy for GFP expression (Figures 2C and

S2B), and it is known that GC content is correlated with the ther-

modynamic parameter DG (Seffens and Digby, 1999; Trotta,

2014), so we only calculated the free energy of the first 100 nt
Cell Systems 6, 206–215, February 28, 2018 209



of 30ATR (DG30ATR_100). Thus, the sum of the energy changes can

be quantified to assess the abundance of a given gene

expression:

�
X

bxDGx = b0 + b1$DG50ATR + b2$DG30ATR_100 + b3$i$Gm

+ b4$j$Gm+ b3$DG�70�+38

The folding energy of DG50ATR, DG30ATR_100, and DG-70~+38 is

totally sequence dependent, and Gm is an average energy

cost for synthesizing a nucleotide, which here for simplicity we

assume is a constant. Although all the five variables are con-

tained in the model, some variables may be unnecessary for a

specific gene organization in a circuit. For example, in the non-

coding ATR cases with X-GFP organization (Figure 2D), the

j and DG30ATR_100 terms are constant values, owing to a lack

of 30ATRs.
The comprehensive model combined the three different sce-

narios with GFP placed at different positions in a polycistronic

gene circuit (Figures 2A–2C). To verify whether the five variables

are necessary for the best prediction of themodel, we performed

stepwise regression to test the significance of each variable

through adding or removing one of the variables step by step

(the significance level for variable entry or stay is 0.05). From

the sequence of generated models, the selected model is cho-

sen based on the lowest Akaike information criterion. Our results

indicated that all five variables are necessary for the coding ATR

model integrating the three scenarios in Figures 2A–2C (Sum-

mary of Stepwise Selection in Table S3), and the comprehensive

model explains 63% of GFP variations (Figure 2F, left). The non-

coding ATRmodel with the three statistically significant variables

DG50ATR, i, and DG-70~+38 (Summary of Stepwise Selection in

Table S3) explains 67% of GFP variations (Figure 2F, right).

With the comprehensive model, we can evaluate the influence

of the adjacent transcriptional sequences on the expression of

a certain gene in the operon, which provides a guide for circuit

design and optimization during circuit engineering.

Protein Expression Metric Guided Logic Circuit Design
To illustrate how themetric could be used to guide circuit design,

synthetic AND logic gate was designed and tested. The gate is

composed of a hybrid promoter pLux/tet, which has one LuxR-

AHL and one TetR binding site. GFP is the output. Maximized

GFP expression is achieved in presence of two inputs AHL and

aTc (Figure 3A), where AHL binds with LuxR protein to activate

pLux/tet transcription and aTc can block TetR repression to

pLux/tet. LuxR and TetR are constitutively expressed from the

same promoter.

There are two possible ways to assemble this circuit, one is

LuxR-TetR (LT) combination, and the other is TetR-LuxR (TL).

The GC content of LuxR (30.3% GC, 781 bp) is lower than

TetR (40.4% GC, 685 bp). So in AND-gate LT, TetR expression

is lowered by its 50-low-GC-content neighbor while the impact

of LuxR to TetR expression in logic TL is minor because the

size of 30ATR is a more significant factor than GC content. We

then calculated the equation for each circuit design and fed it

into our model; the results indicate that LuxR expression in TL

decreases by 4.4% compared with gate LT, however, TetR

expression increases by 93.6% in circuit TL (Table S2). There-

fore, we infer that the basal GFP expression in circuit LT would
210 Cell Systems 6, 206–215, February 28, 2018
be greater than in TL, whereas TL would harbor more dynamic

responses with induction of aTc because of higher TetR expres-

sion. An ordinary differential equation (ODE) model was then

developed to simulate GFP expression based on the normalized

LuxR and TetR production rate changes in the LT and TL gates

(STAR Methods). By tuning the relative production rates of

LuxR and TetR according to the comprehensive regression

model, we can predict GFP dynamics under induction of AHL

and aTc (Figures 3B and S3A, solid lines). It can be seen that, af-

ter normalization, experimental dose-response results, shown

as colored circles, are consistent with ODE model predictions

for all aTc concentrations. Basal expression of pLux/tet in circuit

LT is significantly higher than in circuit TL (Figures 3B and S3A,

data points with error bar). Moreover, themaximumGFP fluores-

cence is also higher in circuit LT, owing to decreased LuxR

expression in gate TL. In addition, the sensitivity to AHL (concen-

tration for half-maximal activation of GFP, K0.5) is improved 2.4-

to 64.5-fold in circuit TL compared with LT for different concen-

trations of aTc. And the nonlinearity (Hill coefficient) is generally

increased 2- to 5-fold with high concentrations of aTc induction.

These data are in accordance with the model calculations that

TetR expression is relatively increased in circuit TL than in LT,

which suppresses the basal expression of pLux/tet and im-

proves the sensitivity and nonlinearity of the promoter to AHL

and aTc.

To further validate the metric’s utility, another two AND-gate

gene circuits (LI and IL) with the position of the genes switched

(LuxR and LacI) were designed (Figure 3C). Hybrid promoter

pLux/lac was used to indicate the relative concentrations of

LuxR and LacI produced from the operon. LacI (53.3%,

1,153 bp) has a high GC content, which may increase LuxR

expression. Our model calculations showed that LuxR expres-

sion increases by 74.3% and LacI increases by 38.1% in circuit

IL compared with LI (Table S2). Since promoter pLux/lac has two

LacI-binding sites (one is in the region between �35 and �10,

and the other is downstream of �10 element), so the overall

LacI inhibition efficiency is increased �76.2% considering the

importance of spacing between the �35 and �10 elements to

RNA polymerase binding. Therefore, the basal GFP expression

of logic IL would be lowered compared with LI. The ODE model

also indicates higher GFP expression in gate LI (Figures 3D and

S3B, solid lines). Experimental results confirmed that the basal

expression for circuit LI is �54-fold higher than IL, and GFP

expression under each induction is higher in gate LI, which is

consistent with the ODE model results (Figures 3D and S3B).

Taken together, the two sets of AND logic gates are an

example of applying our comprehensive model-based tool to

evaluate each gene’s relative expression level in synthetic

AND-gate gene circuits, and verify that ATRs’ features and local

mRNA stability changes in an operon-based gene network affect

protein expression and circuit performance, including basal

level, sensitivity, and nonlinearity. Furthermore, the tool could

serve as a much-needed quantitative guide for rational design

and optimization of gene expression for large genetic circuits.

Tuning Gene Expression with Synthetic 50 ATRs
In general, the minimum free energy of RNA folding has a

negative correlation with GC content (Seffens and Digby, 1999;

Trotta, 2014). Next, we sought to use synthetic noncoding
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Figure 3. Model-Guided Circuit Design for Synthetic Logic Gates

(A) Two designs for pLux/tet–AND logic gate. A constitutive promoter (gray arrow) drives LuxR (orange rectangle) and TetR (green rectangle) expression. pLux/tet

is highly activated in the presence of both AHL and aTc. LT and TL represent the order of LuxR and TetR positions in the operon. LuxR can bind with AHL (gray

oval) to activate pLux/tet promoter (blue arrow), while aTc (green hexagon) can block TetR inhibition to pLux/tet promoter. Lines with arrowheads indicate

activation, and lines with T bars indicate inhibition.

(B) Dose-response curves for different concentrations of AHL and aTc. The solid lines are from ODEmodel simulations based on the calculated relative changes

of LuxR and TetR concentrations in LT and TL from our linear comprehensive model. Data points with error bars are experimental results, showing good match

with model predictions. The inset diagram is the basal expression of GFP for design of LT and TL. Color curves are inductions with different aTc concentrations

(20 ng/mL, 100 ng/mL, and 200 ng/mL).

(C) Two designs for pLux/lac–AND logic gate. A constitutive promoter drives LuxR and LacI expression. pLux/lac (purple arrow) is highly activated in the presence

of both AHL (N-(b-ketocaproyl)-L-homoserine lactone) and IPTG (isopropyl b-D-1-thiogalactopyranoside, blue hexagon). LuxR can bind with AHL to activate

pLux/lac promoter, while IPTG can block LacI inhibition to pLux/lac promoter. LI and IL represent the order of LuxR and LacI positions in the operon.

(D) Dose-response curves for different concentrations of AHL and IPTG. The solid lines are model simulations based on the calculated relative changes of LuxR

and LacI concentrations in LI and IL from our linear comprehensive model. Experimental results (data points with error bar) show good match with model

predictions. Color curves are inductions with different IPTG concentrations (1 mM, 10 mM, and 100 mM). Inset diagram is the basal expression of GFP for design of

LI and IL. Data represent the mean ± SE of three replicates. p values were calculated using Student’s t test.
DNA fragments, with the same size but varying GC content or the

sameGC content but varying sizes, to fine-tune gene expression

in synthetic circuits. We first synthesized six short DNA frag-

ments (with a constant size of 200 bp) with varying GC content

from 28% to 53%, which were inserted downstream of the

LuxR gene but upstream of GFP in the two-gene operon (Pro-

moter-LuxR-Synthetic fragment-GFP). According to our model,

synthetic fragments with varying GC content could tune GFP

expression (Figure S3C).

Experimental results show that GFP expression is continu-

ously increased for synthetic fragments with increasing GC con-

tent from 28% to 53% (Figure 4A). Low-GC-content fragments

downregulated GFP expression about 25-fold. Microscopy re-

sults further confirmed flow cytometry data and visualized a

gradual increase of fluorescence intensity with increasing GC

content ATRs (Figure 4B). Using this strategy, we further synthe-
sized 13 DNA fragments as 50ATRs with varying GC content but

with a constant size (200 bp), and placed downstream of the

promoter (Figure 4C). Results indicate that synthetic short DNA

sequences have a substantial impact on GFP expression: low-

GC-content ATRs largely decrease expression of neighbors

(up to 366-fold) and exhibit a gradually increasing pattern from

28% to 48%, while high GC content (48%–67%) ATRs drive

GFP expression to a level comparable with the control (without

synthetic fragments). It is possible that GFP achieves its

maximum expression when the upstream ATR mRNA piece

has a relatively stable structure.

To further verify the role of ATR regulation, we varied the size

of 50ATR through shortening and adding a common sequence

(Egbert and Klavins, 2012). Using S44 (GC, 44%; size, 200 bp)

in Figure 4C as the seed sequence, we shortened it to 100 bp

and 50 bp, and lengthened it from 400 bp (combined with two
Cell Systems 6, 206–215, February 28, 2018 211
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Figure 4. Tuning Gene Expression with Syn-

thetic 50 Adjacent Transcriptional Regions
(A) Synthetic 50ATRs (SynF) to tune GFP expres-

sion for circuit CP-LuxR-GFP. 200 bp ATRs were

inserted between LuxR and GFP genes to tune

GFP expression, and the control (Ctl) was con-

structed without an ATR insert. Flow cytometry

results indicate that GFP fluorescence increases

with gradually increasing 50ATR GC content from

28% to 54%.

(B) Microscopy results for GFP fluorescence for

the constructs in (A). Scale bar, 5 mm. Magnifica-

tion, 403.

(C) Synthetic 50ATRs (SynF) with different GC

content to tune GFP expression for circuit CP-

GFP. All the SynF are the same size (200 bp) and

are inserted upstream of GFP gene (top). Flow

cytometry results of GFP fluorescence for 50ATRs
with GC content from 28% to 67% (bottom).

(D) Circuits with different sizes of 50ATR (through

shortening and adding a common sequence S44;

GC, 44%; size, 200 bp) were constructed to tune

GFP expression. Flow cytometry results show that

GFP fluorescence intensity gradually decreases

with increasing size of 50ATR.
Error bars are mean ± SD of at least ten mea-

surements performed on three different days.
pieces of S44) to 4,600 bp (combined with 23 pieces of S44),

and all ten fragments have the same GC content (44%, Fig-

ure 4D). Model analysis and flow cytometry results show that

GFP fluorescence intensity gradually decreases with increasing

50ATR sizes (Figures S3C and 4D). We also used the data to

further refine our comprehensive noncoding model and found

three variables DG50ATR, i, and DG-70~+38 are still required for

the best fitting efficacy and explains 60.1% of GFP variations

(Figure S3D and Table S4). The refined model further expands

the variables’ range (GC, 28% to 67%; size, 50 to 4,600 bp)

and could provide more accurate predictions. Taken together,

we demonstrate that synthetic noncoding 50ATRs with de-

signed GC content and sizes can be used to accurately tune

gene expression and achieve expression levels spanning

more than 300-fold.

Using Synthetic ATRs to Tune Toggle Switches
Finally, we illustrated the application of synthetic ATRs to modu-

late the nonlinear bistable potential of synthetic toggle switches.

As illustrated in Figure 5A, LacI protein could inhibit TetR by

binding the pLac promoter, while TetR could bind pTet to block

LacI expression, forming a mutually inhibitory network. Here, we

positioned 200 bp synthetic ATRs with 28% and 67% GC con-

tent upstream of RBS-TetR module to tune TetR production

(T_S28 and T_S67). According to our analysis above, low-GC-

content 50ATR can downregulate TetR expression, while high

GC content can keep TetR at a high level.
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Flow cytometry was employed to

analyze the initial states of the toggle

switches with ATR insertions. As shown

in Figure 5B, T_WT initially shows bimodal

distribution, GFP-ON and GFP-OFF pop-
ulations, resulting from gene expression noise in a relatively

balanced system. In contrast, both T_S28 and T_S67 exhibited

unimodal distributions. Synthetic ATR S28 decreased TetR

expression leading to higher LacI and GFP expression, whereas

the fragment with 67%GC content showed a lower GFP expres-

sion than T_S28 and slightly lower than the high GFP population

cells in T_WT (Figure 5B). The results indicate that the synthetic

ATRs can tune the initial steady states of toggle switches and

modulate the population from bimodal to unimodal distributions.

To achieve a quantitative understanding of the ATR’s regula-

tion on bistability, we performed bifurcation analysis from the

same mathematical model as the classical toggle switch (Gard-

ner et al., 2000). We found that the production rate of TetR has a

considerable effect on bistability and the bistable region. A small

production rate, corresponding to low-GC ATR, has a small bi-

stable region, whereas an increase in the production rate leads

to a larger bistable region (Figure 5C). Experimentally, hysteresis

of the three toggles was tested to verify the model analysis. The

results indicate that all three toggles exhibited hysteresis, and

T_WT harbors the broadest bistable region (Figures 5D–5F).

Moreover, consistent with model analysis, the bistable regions

gradually decreased from T_WT to T_S67 to T_S28. Collectively,

these results validate a novel strategy of using synthetic ATRs to

tune the initial steady states and bistability of gene networks.

Furthermore, this example demonstrates the feasibility of

bridging ATR regulation with mathematical modeling to quantita-

tively understand and tune gene network dynamics.
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Figure 5. Using Synthetic ATRs toModulate

Bistability of Toggle Switches

(A) Left: Abstract diagram of toggle switch topology,

where X and Y mutually inhibit each other. Right:

Molecular implementation of the toggle switch. LacI

inhibits TetR by binding the pLac promoter, while

TetR binds pTet to block LacI expression, forming a

mutually inhibitory network. Inducers IPTG and aTc

(hexagon) can relieve LacI and TetR inhibition,

respectively. GFP serves as the readout of the pTet

promoter. Synthetic ATRs (SynF) were arranged

right upstream of the TetR gene.

(B) Initial steady states for the three toggles. Tog-

gle without ATR insertion (T_WT) shows bimodal

distribution (GFP-OFF and GFP-ON), while T_S28

(ATR with 28% GC content, 200 bp) shows higher

GFP expression and T_S67 (ATR with 67% GC

content, 200 bp) shows lower GFP expression

than the GFP-ON population of T_WT.

(C) Bifurcation analysis for GFP (LacI) expression

with different TetR production rates under induc-

tion of varying concentrations of aTc. A low pro-

duction rate for TetR, corresponding to T_S28, has

the smallest bistable region, while a high rate

(corresponding to T_WT) has the broadest bistable

region. Solid lines represent stable steady-state

solutions and dotted lines are unstable steady-

state solutions. GFP* is the computed GFP abun-

dance from the model.

(D–F) Hysteresis results for toggles (D) T_S28, (E)

T_S67, and (F) T_WT under induction of varying

concentrations of aTc. Red lines indicate the initial

OFF cells with basal GFP expression, while green

lines indicate the initial ON cells with high GFP

expression. Data represent the mean ± SD of three

replicates. The gray area is the presumed bistable

region for each circuit.
DISCUSSION

Circuit engineering is the first step for synthetic biologists to

achieve designed functionalities with synthetic gene circuits. A

successful synthetic gene circuit depends on full characteriza-

tion of the biological components and the interactions that

emerge between modules when assembled into a complete

gene network (Bennett and Hasty, 2009; Brophy and Voigt,

2014; Nielsen et al., 2016;Wu et al., 2017). Development of a reli-

able tool to predict protein expression in the circuit has wide

applications in biotechnology. For example, RBS Calculator is

a well-developed design tool to predict and control translation

initiation and protein expression in bacteria (Farasat et al.,

2014; Salis et al., 2009).

Here, we systematically investigated how adjacent transcrip-

tional regions affect protein expression in synthetic operon-

based gene circuits. Through placing the GFP at different

positions (proximal, middle, and distal) to the promoter, we

developed a new protein expression metric that takes into ac-

count the features of adjacent transcriptional regions, including

GC content, size, and stability of mRNA folding near RBS (Fig-

ure 2). The metric was established from about 120 gene circuits,

which to our knowledge represents one of the largest databases

of operon-based synthetic gene circuits in one study so far. This

metric explains 63% and 67% of GFP variations in the coding
ATR and noncoding ATR polycistronic gene circuits, respec-

tively. Moreover, our experimental results also demonstrated

the metric’s predictions of gene expression changes and

induced nonlinear dynamic responses in different genetic con-

texts (Figures 3, 4, and 5), suggesting the model’s utility in guid-

ing circuit design. Most ATRs in the circuits were 500–2,000 bp,

and the maximum is 2,422 bp, which may undermine the contri-

bution of ATR size to GFP variation. Moreover, because of the

limitation in sample size and available gene resources, the

collected data are not perfectly normally distributed, especially

for circuits with GFP in the middle (X-GFP-Y), which may

compromise the robustness of the model.

Consistent with previous results that gene position in operons

can affect gene expression (Chizzolini et al., 2014; Lim et al.,

2011), our results further demonstrate that gene position (corre-

sponding to change of ATR) significantly altered gene network

dynamics, including basal expression, system sensitivity, and

nonlinearity, which has profound impacts for nonlinear dynamic

systems. Such an adjacent gene regulation effect has been

generally neglected during construction of synthetic gene

networks.

Although it is relatively well established that gene expression is

influenced by the local context, holistic understanding of archi-

tectural rules governing polycistronic gene circuits remains

largely unexplored. Compared with previous gene expression
Cell Systems 6, 206–215, February 28, 2018 213



tuning strategies or insulation strategies, such as RBS Calcu-

lator, bicistronic design with translation of a short leader peptide,

or a designed DNA sequence surrounding the start codon

(mostly less than 100 bp) (Farasat et al., 2014; Ferreira et al.,

2013; Li et al., 2017; Mutalik et al., 2013; Salis et al., 2009), our

work places more emphasis on whether and how polycistronic

operon organization (X-GFP, X-GFP-Y, andGFP-X) and different

adjacent genes (size ranging from 313 to 2,362 bp, and GC con-

tent ranging from 30.3% to 60.4%) affect protein expression in

operon-based gene circuits. Furthermore, we validated that

the usage of designed synthetic DNA fragments with either

different GC content (28%–67%) or size (50–4,600 bp) as 50ATRs
tuned gene expression and modulated bistable regions of ge-

netic toggle switches. The synthetic ATRs have a wide variable

interval, therefore making them potentially applicable to a broad

range of scientific and engineering tasks. Such a gene expres-

sion tuning strategy also avoids the production of unwanted

peptides and hence reduces potential metabolic burden. We

also observed that circuits having different ATRs have an impact

on the time that cells reach stationary phase with similar optical

density (Figure S4B), suggesting that ATRs could be used as a

means to ‘‘program’’ the metabolic load and fitness of a cell

simultaneously.

Our results show that the context dependency of gene expres-

sion is not just limited to the RBS region but also includes char-

acteristics of the whole operon. This ‘‘global’’ effect in polycis-

tronic operons could be quantified by a biophysical model,

which explains nearly two-thirds of protein expression variations

across all the circuits with different configurations. The quantita-

tive relationship between adjacent transcriptional regions and

gene expression regulation in polycistronic circuits helps to

evaluate each gene’s relative expression levels in a circuit and

predict circuit outputs, which would save experimentalist’s

time and resources to screen and test combinations of modules,

and thus should greatly facilitate optimization of circuit design

and accelerate the engineering of complex gene networks.

A central goal of synthetic biology is to develop genetic circuits

toprogramcell behaviors inapredictableway.With the increasing

complexity of integrated multi-layer circuits, organization of spe-

cific bio-components and circuitry structure design become

extremely important for functionality (Chen et al., 2015b; Nielsen

et al., 2016;Wu et al., 2014). The tool we provide here could serve

as amuch-needed quantitative guide for rational design and opti-

mization of gene expression for large genetic circuits.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains, Media, and Culture Conditions
All cloning experiments and fluorescent measurements were performed in Escherichia coli DH10B (Invitrogen). Synthetic toggle

switches (T_S28, T_S67 and T_WT) were tested in E. coli K-12 MG1655 strain with lacI-/- (Litcofsky et al., 2012). Cells were cultured

in liquid or solid Luria-Bertani (LB) broth mediumwith 100 mg/ml ampicillin at 37�C. Chemicals AHL (N-(b-Ketocaproyl)-L-homoserine

lactone), IPTG (isopropyl b-D-1-thiogalactopyranoside), and aTc (anhydrotetracycline) were dissolved in ddH2O and diluted into indi-

cated working concentrations. Cultures were shaken in 5 mL and/or 15 mL tubes at 220 rotations per minute (r.p.m).

METHODS DETAILS

Plasmid Construction
Most genes are obtained from iGEM Registry (http://parts.igem.org/Main_Page). These genes are often used in synthetic

biology projects, including transcriptional factors, quorum-sensing components, and other functional genes (Table S1). Plasmids
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were constructed using standard molecular biology techniques and all genetic circuits were assembled based on standardized

BioBrick methods. As an example, construct Promoter-TetR-GFP is composed of five BioBrick standard biological parts:

BBa_J23104 (constitutive promoter, CP), BBa_B0034 (ribosome binding site, RBS), BBa_C0040 (tetR), BBa_E0040 (green fluores-

cent protein, GFP) and BBa_B0015 (transcriptional terminator). To produce RBS-TetR module, plasmid containing TetR was di-

gested by XbaI and PstI as the insert fragment while RBS vector was cut by SpeI and PstI. Both fragment and vector were separated

on 1% TAE agarose gel electrophoresis and purified using PureLink gel extraction Kit (Invitrogen). Purified fragment and vector were

then ligated by T4 DNA ligase (New England Biolabs, NEB). The ligation products were further transformed into E. coli DH10B and

plated on LB agar plate with 100 mg/ml ampicillin for screening. Finally, plasmids extracted by GenElute HP MiniPrep Kit (SIGMA-

ALDRICH) were confirmed through gel electrophoresis (digested by EcoRI and PstI) and DNA Sequencing (Biodesign sequencing

Lab, ASU). Similar steps were carried out for subsequent rounds of cloning to assemble the whole construct. All the circuits’ DNA

sequences are provided in the Table S6.

Also, 17 transcriptional factors with varying GC content and sizes used in Figure 2D were amplified from E. coli genome with

designed primers (Table S1). Synthetic sequences were randomly generated with the same length (200 bp) but various GC contents

(28%-67%). Sequences with ribosome binding site-features (AGGAGG) were redesigned to exclude its translation potential. All

synthetic sequences and primers were synthesized as custom DNA oligos or gBlocks gene fragments from Integrated DNA Tech-

nologies (IDT). In order to express consistently in the cell, all constructs were finally subcloned into pSB1A3 vector prior to the test.

Minimum Free Energy Calculation
All minimum free energy (MFE) of mRNAs were computed on Nucleic Acid Package (NUPACK) web server (Zadeh et al., 2011). Spe-

cifically, we chose Serra and Turner parameter set as the RNA energy parameter and set 37�C, 1.0 M Na+ and 0 M Mg2+ to be the

prediction algorithm (Serra and Turner, 1995).DG5’ATR andDG3’ATR_100 were calculated from sequence including ATR (with or without

RBS), and the two scar sequences introduced during cloning process.DG-70�+38 is obtained from 70 nt upstream sequence and 38 nt

downstream around ATG (+1) codon of GFP gene.

RT-qPCR
Total RNA was extracted from three individual cell cultures (1.5 mL exponentially growing cell cultures, fresh cultures) for each

construct in Figure 1B using Trizol (Invitron). DNase I (NEB) was used to remove traces of genomic DNA and then the total RNA

was further purified using purelink RNA Mini Kit (Life technologies), and the eluted total RNA was quantified using BioTek’s Synergy

H1multi-mode Reader. cDNA was synthesized from RNA using an iScript cDNA synthesis kit and random primers (Bio-Rad). The re-

action volume is 20 mL and �1 mg RNA were used for reaction. Concentrations of cDNA are then quantified by qPCR using iTaq Uni-

versal SYBRGreen Supermix (Bio-Rad) with the iQ5 Real-Time PCR detection system (Bio-Rad). Prokaryotic 16S rRNAwas employed

as endogenous control. Primers (IDT) used for amplifying 16S rRNA: 5’-GAATGCCACGGTGAATACGTT-3’ (rrnB, forward, starting at

the 1361st nucleotide), and 5’-CACAAAGTGGTAAGCGCCCT-3’ (rrnB, reverse, starting at the 1475th nucleotide) (Lim et al., 2011). Two

pairs of primerswere designed to amplify GFP are P1: 5’-CAGTGGAGAGGGTGAAGGTGA-3’ (forward, starting at the 87th nucleotide);

and P2: 5’-CCTGTACATAACCTTCGGGCAT-3’ (reverse, starting at the 283th nucleotide); P3: 5’-AGACACGTGCTGAAGTCAAG-3’

(forward, starting at the 320th nucleotide); and P4: 5’-TCTGCTAGTTGAACGCTTCCAT-3’ (reverse, starting at the 539th nucleotide).

qPCR result is analyzed using Bio-rad CFX Manager software version 3.1. Each sample was performed with two replicates for both

16S rRNA and GFP cDNAs, and gene expression was normalized to 16S rRNA. Delta Ct values were calculated (Ct
target – Ct

16S)

and compared with the biological control (Constitutive promoter-RBS-GFP) to calculate the relative GFP mRNA concentrations.

The minimum information for publication of quantitative real-time PCR (MIQE) is also provided in Table S5.

Flow Cytometry Measurements
All confirmed constructs were re-transformed into DH10B strain. Single colonies were picked and cultured in 4 mL LB medium

(100 mg/ml ampicillin) for 24 hr at 37�C for testing. Flow cytometry measurements were performed using Accuri C6 flow cytometer

(Becton Dickinson) and all samples were analyzed at twelve hour and twenty-four hour time points, and the two time points showed

similar GFP expression pattern (Figure S4A). GFP excitation: 488 nm, and emission: 530 ± 15 nm. All data were collected in a log

mode. Data files were further analyzed by MATLAB (MathWorks). All the fluorescence data are collected by flow cytometry unless

specified, and the fluorescence was not normalized against cell density because we measured the fluorescence of single cells,

instead of the population, so the fluorescence value is not directly correlated with population density. 20,000 individual cells were

analyzed for each sample at a slow flow rate.

Hysteresis Experiment
All synthetic toggle switch plasmids (T_S28, T_S67 and T_WT) were transformed into K-12 MG1655 strain with lacI-/-, and cells

cultured overnight in LB medium. T_WT plasmid has been used in previous study (Wu et al., 2017). We prepared two pre-cultures

with two initially different stable steady states, i.e., low GFP state (OFF) without inductions and high GFP state (ON) induced with

enough aTc. The two cells were then inoculated into media containing an aTc concentration range so that cells with different initial

conditions were grown in identical conditions. Specifically, for OFF-ON experiment, samples were diluted evenly into 5 ml polypro-

pylene round-bottom tubes (Falcon) and induced with different amounts of aTc. Fluorescence was then measured at 6, 8 and 21 hr

time points to monitor the fluorescence level. In our experiment, we found the intensity of fluorescence became stable after �8 hr
Cell Systems 6, 206–215.e1–e6, February 28, 2018 e2



induction. For the ON-OFF experiment, cells were induced with 40 ng/ml aTc initially to prepare the initial ON cells and fluorescence

wasmeasured at 8 hr to ensure they were fully induced. The initial ON cells were then collected by low-speed centrifugation, washed

once to remove the inducer, resuspended with LB medium, diluted and transferred into fresh medium with various aTc concentra-

tions at 1:100 ratio. Flow cytometry measurement was performed for each sample after 6, 10 and 18 hr culturing, respectively. Data

shown in Figure 5 are 18 hr results.

Sample Preparation and Microscopy
Single colonies were picked and grew at 37�C in liquid LBmedium. After 24 hours, 1mL cells were collected and spun down at 2500 g

for 5min, washedwith 1x phosphate buffer solution (PBS), and resuspended by 200 mL 1xPBS. 5 mL of concentrated cell solution was

placed on glass microscope slides and images were captured with a Nikon Ti-Eclipse inverted microscope (magnification 40x). GFP

was visualized with an excitation at 472 nm and emission at 520/35 nm using a Semrock band-pass filter. The exposure time for each

sample is kept the same.

Growth Curve Assay
Ten different gene circuits with different fluorescence expression levels (high, medium and low) are selected to test their growth rates

under the same condition. Single colonies harboring circuit plasmid were picked up and diluted into 4 mL LB medium, from which

300 mL were transferred into 96-well sterile plate. A negative control with only LBmediumwas also prepared. Optical density (OD600)

and fluorescence (excitation: 485 nm; emission: 530 nm) weremeasured every 30minutes by plate reader (BioTek) over 20 hours with

shaking platform and temperature control (37�C). Three random colonies were picked up and triplicate wells weremeasured for each

sample. Our results indicated that gene expression in the circuit influenced the time of cells going to the exponential phase, but all the

samples went to stationary phase with similar OD value after �12 hr (Figure S4B). For stable protein expression, we chose the 24 hr

data point in this study unless specified.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis and Comprehensive Model Development
To investigate the correlation between GFP expression and sequence characteristics in different circuits with different genes and

organizations, we performed multiple linear regression analysis using the classical statistical software SAS 9.4. Here, we

mainly focused on five different independent variables including 5’- and 3’-ATR GC content (variable is computed as a percentage),

5’- and 3’- size (variable is computed as segment length), and DG-70�+38, all of which can be computed from the DNA sequence in

each circuit. The dependent variable is GFP fluorescence measured by flow cytometry, which was transformed to log scale during

analysis. Eight data points collected in three days were used for regression analysis in Figures 1 and 2, and twelve data points were

collected in three different days for the 17 transcriptional factors insertion as non-coding ATRs, and all of the collected data points are

imported to SAS for analysis (Data S1).

All the information of the five variables is calculated from the specific DNA sequence. The 5’ATR includes the sequence from the

scar right after the promoter to the scar right before the RBS ofGFP. And the 3’ATR includes the sequence from the scar right after the

GFP to the scar right before the terminator. The scar sequence is generated from the molecular cloning using biobrick modules, and

the size is 6 or 8 nucleotides. GC content and size of ATRs are calculated using the web server Endmemo (http://www.endmemo.

com/index.php). DG-70�+38 were computed using NUPACK web tool (http://www.nupack.org). Since the DG are negative values,

log transformations were performed to the absolute value of DG, and then set to negative value. To build a comprehensive model

for all the scenarios in Figures 2A–2C (GFP-X, X-GFP-Y, and X-GFP), we introduced dummy values for some variables in some

regression analyses for analytical convenience. For example, construct GFP-X (Figure 2C) has no varied 5’ATR (only a RBS and

scar sequence), and its GC content value is set to 0.04 instead of 0. Similarly, DG5’ATR is set to �0.05 for constructs without

5’ATR, and DG3’ATR_100 is set to �0.00001 for constructs without 3’ATR. These dummy values don’t significantly influence model

fitting efficiency.

We first use scatter plot to display the relationship between GFP and each of the variables we are interested, without any data

transformation. As shown in Figure S5, the data has a large variability ranging from 21,000 to 1900,000 (arbitrary unit), and the fit

without transformation is weakly linear and heteroscedastic. It would be problematic to use linear data for regression because of

the inconstant variance from the data. However, the log is a variance stabilizing transformation, and it clearly reduced changes in

variability of the data along the x-axis (Figures 2A–2D). Furthermore, transformed data conforms to a nearly normal distribution (Fig-

ure S4C), more easily enabling us to performmultiple regression analysis to find a quantitative estimation of the relationship between

GFP and the other three or five variables together.

To explore possible mechanistic basis of ATR regulation, we developed a comprehensive linear model based on the sequence-

dependent energetic changes during the polycistronic mRNA folding and translation and the costs of protein biosynthesis. The

biophysical model was based on previous pioneer work characterizing the relationship between free energy changes and protein

translation initiation (Espah Borujeni and Salis, 2016; Salis et al., 2009; de Smit and van Duin, 1990). We calculated the free energies

for 5’ATR and the first 100 nucleotides of 3’ATR (DG5’ATR and DG3’ATR_100) using NUPACK. Since all the energy terms are negative

values, absolute values were first acquired for each of them and then set to negative values for data analysis. The constantGm is set

to 1, and for cases of non-coding ATRs, the coefficients for j and DG3’ATR_100 are set to 0, owing to a lack of 3’ATRs.
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To find the linear comprehensive coding-ATR model having the best prediction of dependent variable from the independent vari-

ables, we performed stepwise regression with the five variables: DG5’ATR, DG3’ATR_100, 5’ATR size, 3’ATR size and DG-70�+38. Step-

wise regression is an automated tool for model selection through adding themost significant variable or removing the least significant

variable as needed for each step (the significance level for variable entry or stay is 0.05). From the sequence of generatedmodels, the

selected model is chosen based on the lowest Akaike information criterion. Results showed that all the five variables are statistically

significant for the best prediction of GFP expression in the comprehensive coding-ATR model, and explains 63% of GFP variations

(Table S3). It is necessary to note that the negative correlation between protein abundance (c) and the sum of energetic terms

(SbxDGx,) in the equation is already reflected in the coefficients of each term.

The fitting diagnostics indicated that there is no apparent trend for the residuals, and the data is roughly normally distributed, and

the variables in themodel explain most variation in the response variable from the residual-fit result (Figure S4C). The predicted value

by observed GFP plot (Predicted Value - logGFP) reveals a reasonably successful model for explaining the variation in GFP for most

of the circuits (Figure 2F, left panel and Figure S4C). The predicted responses (logGFP value) are calculated according to the gener-

ated linear regression model, with the corresponding inputs from each circuit. And a plot of predicted GFP against experimentally

observed GFP values are then generated to evaluate and visualize themodel-fitting efficacy (Figure 2F). If the model predicted values

and observed values agreed perfectly (R2 = 100%), all the data points would fall on the dotted diagonal line of the squares. However,

several outliers in the combinedmodel are also observed and some observations with high leveragesmight also be overly influencing

the fit result (Figure S4D). Of the outliers, most of them are corresponding to specific circuits, such as outliers 217�224 correspond-

ing to the tricistronic circuit (promoter-luxR-appY-GFP, has 8 data points). Observations with high leverages such as 505�512 are

corresponding to the circuit promoter-GFP-Zif23_GCN4. Moreover, some outliers are also high-leverage observations. Given the

data sample size (N = 632), the original data collection, and the overall data-fitting efficacy, we here didn’t exclude the outliers or

data with very high leverages (although that would improve the model-fitting efficacy).

Similar analysis was also applied to the data with non-coding ATR, and results showed that 5’ATR size and folding energyDG5’ATR,

local mRNA folding energy DG-70�+38 are crucial for the best prediction of GFP expression in the comprehensive non-coding ATR

model (Table S3). Furthermore, the three variables together explain two-thirds of GFP variations in those synthetic circuits (Figure 2F,

right panel). The model and coefficients were also validated by another statistical software XLSTAT (version 2017.4). Based on the

comprehensive non-coding model (Figure 2F), we then employed XLSTAT to predict GFP expression (mean and standard deviation)

in circuits regulated with synthetic ATRs having either different GC contents or different in Figures 4C and 4D. Model predicted GFP

(Figure S3C) has a similar expression trend with experimental results (Figures 4C and 4D).

We also performed k-fold cross validation to further assess our model performance (k = 10). The entire dataset was randomly

partitioned into a training dataset, a validation dataset and a testing dataset. The model was built based on the training dataset

(50% of the original data) and then validated on the other 25% dataset, and finally was used to assess the performance on the

testing dataset (25% of the original data, Table S3). The selection method is stepwise, selection criterion is Schwarz’ Bayesian

Criterion (SBC) and stop criterion is Akaike’s Information Criterion (AIC). We performed 10 times of the 10-fold validation, and

found that the coefficients for each variable and intercept as well as R2 are very close to the above comprehensive model (Table

S3). Moreover, the standard deviation for the square root of mean squared error (RMSE) from the 10 repeats of 10-fold validation is

very small (0.0064 for coding ATR, and 0.0128 for non-coding ATR), suggesting the model we built has a decent prediction accu-

racy and consistency.

In summary, we have demonstrated that the coding and non-coding adjacent transcription regions have remarkable effects on

regulating GFP expressions in synthetic operon-based gene circuits (Figure 2). Furthermore, we can use a general biophysical model

with sequence-dependent energetic changes to quantify the ATR regulation on gene expression. In this study, wemainly investigated

five factors involved in ATR regulation: 5’ and 3’ ATRs free energies DG5’ATR and DG3’ATR_100, transcriptional sizes and the mRNA

folding energy near the GFP starting codon. It is possible that there are some other unknown or uncharacterized factors influencing

GFP expression, such as the codon degeneracy for the coding ATRs. Furthermore, there may have some special local secondary or

higher structures in some ATRs, which may impact the degradation or translation of GFP.

Deterministic Model Construction and Prediction for the Logic Gate
In the four logic gates, GFP expression depends on the relative concentrations of activator (LuxR) and repressor (TetR or LacI) pro-

duced from a constitutive promoter. AHL binds with LuxR protein to activate pLux/tet transcription and aTc can block TetR repres-

sion to pLux/tet. Since the two sets of logic gates (LT/TL and LI/IL) are constructed similarly and described by the same deterministic

equations, we here only explain the technical details for the gate LT. Themodel was built based on our previouswork (Wu et al., 2014).

From the biochemical reactions depicted in Figure 3A, we derived the following ordinary differential equations for intercellular con-

centrations of LuxR (U), TetR (R) and GFP (G):

dU

dt
= ðk0 +a1Þ � d1$U (Equation 1)
dR

dt
= ðk0 +a2Þ � d2$R (Equation 2)
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and
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i

(Equation 4)
C=
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Kd

(Equation 5)
F =
1

Knr
t +ATCnr

(Equation 6)

The first two equations describe the concentrations of LuxR and TetR, both of which are driven by a constitutive promoter at a

constant level (k0). a1 and a2 are constants used to describe the relative changes of LuxR and TetR production, owing to the po-

sition changes in the And-gate circuit. d1 and d2 are the degradation rates for the LuxR and TetR protein, respectively. The third

equation describes the concentration of GFP, which is determined by the relative concentrations of LuxR and TetR. LuxR binds to

AHL molecules and forms the active LuxR monomers in the form of (LuxR-AHL), when the AHL concentration reaches a certain

threshold (quorum-sensing mechanism). So the fraction of LuxR monomers (f) bound by AHL can be described by Equation 4,

where ni is the binding cooperativity (Hill coefficient) between LuxR and AHL, and Ki represents the dissociation constant between

LuxR and AHL. LuxR needs to form a dimer to bind the promoter and activate transcription, so the concentration of the functional

LuxR dimer (C) that binds to the hybrid promoter pLux/tet and activates its transcription can be described by Equation 5, where Kd

is the is the dissociation constant for dimerization. Thus, GFP expression driven by LuxR and inducer AHL is represented by the

first part of Equation 3. c1 is the basal mRNA expression without LuxR protein; K1 is the production rate; and Kn is the dissociation

constant between C and pLux/tet promoter. TetR protein can bind and inhibit GFP transcription, and the inhibition can be

repressed by inducer aTc. So high GFP expression is achieved in presence of high doses of aTc, and vice versa (Equation 6).

The second part of Equation 3 describes TetR inhibition to GFP expression, under induction of aTc. And the third part of Equation 3

is the degradation of GFP.

The three ordinary differential equations were used tomodel the two sets of AND-gate circuits: LT and TL, LI and IL. For each of the

two sets, most parameters should be the same except a1, a2, c1, and Ki. Based on the parameter used in our previous studies (Wu

et al., 2014), we used the following parameters in our simulations: k0 = 1.0, d1 = 0.2, d2 = 0.2, d3 = 0.2, c1 = 0.002 (for TL) or 0.08

(for LT), K1 = 1.7, Kn = 4.4, Kd = 13, Kt = 400, Kr = 3.2, ni = 1.2, nt = 2, ni = 1.2, nr = 2. For circuits LI and IL, c1 = 0.002 (for IL) or

0.05 (for LI), Kt = 1000, and the other parameters are the same.

From our comprehensive linear model, we calculated that LT has more LuxR than TetR production (Table S2), so the basal

expression c1 is set to a bigger value in LT model. Ki has little effect on the shape of the GFP dynamic curves, but determines

the AHL concentration producing half conversion of LuxR monomers into LuxR-HSL complexes (half GFP activation). So the Ki

value in the model is acquired from the experimental data. Through changing the relative expression of LuxR and TetR (i.e. a1
and a2), we can modulate GFP production dynamics (Figure S3E). To predict the GFP responses in circuit TL with AHL and aTc

inductions, we use the parameter a1 and a2 in LT as a control to tune the parameter a1 and a2 in TL. According to the linear

model calculations, the production rate for LuxR in LT and TL almost doesn’t change, but production rate of TetR in TL increases

by �93% (Table S2). For example, we set the production rates for LuxR and TetR in circuit LT to 1.0 (k0 + a1) and 0.6 (k0 + a2),

respectively. So in the circuit TL, the two rates should be 1.0 (k0 + a1) and 1.15 (k0 + a2) based on calculations. For different

doses of aTc induction, we allowed �10% parameter variations for a1 and a2. We found that the model simulations have

a good match with our experimental data. The parameters for a1 and a2 in TL and LT under different doses of aTc are

listed below:
Circuit

aTc

(0 ng/ml)

aTc

(0.2 ng/ml)

aTc

(2 ng/ml)

aTc

(20 ng/ml)

aTc

(100 ng/ml)

aTc

(200 ng/ml)

LT a1 = 0

a2 = �0.3

a1 = 0

a2 = �0.4

a1 = 0

a2 = �0.38

a1 = 0

a2 = �0.3

a1 = 0

a2 = �0.35

a1 = 0

a2 = �0.25

TL a1 = 0.1

a2 = 0.1

a1 = 0.1

a2 = 0.05

a1 = 0.1

a2 = 0

a1 = 0.1

a2 = 0.1

a1 = 0.1

a2 = 0.1

a1 = 0.1

a2 = 0.25
Compared to circuit LI, the production rate for LuxR in IL increases by �74%, and �38% for LacI (the overall inhibition

efficiency may increase by �76%, Table S2). For example, we set the production rates for LuxR and LacI in circuit LI to 1.0

(k0 + a1) and 0.8 (k0 + a2), respectively. So in the circuit IL, the two rates should be 1.74 (k0 + a1) and �1.41 (k0 + a2) based on
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calculations. For different doses of IPTG induction, we allowed �10% parameter variations for a1 and a2. And the parameters for a1
and a2 in LI and IL under different doses of IPTG are listed below:
Circuit

IPTG

(0 mM)

IPTG

(0.1 mM)

IPTG

(1 mM)

IPTG

(10 mM)

IPTG

(100 mM)

IPTG

(200 mM)

IPTG

(400 mM)

LI a1 = 0

a2 = �0.1

a1 = 0

a2 = �0.12

a1 = 0

a2 = �0.1

a1 = 0

a2 = �0.15

a1 = 0

a2 = �0.25

a1 = 0

a2=�0.28

a1 = 0

a2 = �0.2

IL a1 = 0.57

a2 = 0.57

a1 = 0.6

a2 = 0.5

a1 = 0.69

a2 = 0.5

a1 = 0.82

a2 = 0.35

a1 = 0.7

a2 = 0.4

a1 = 0.87

a2 = 0.5

a1 = 0.57

a2 = 0.56
Bifurcation Analysis for the Synthetic Toggle Switches
For the toggle switch model in Figure 5, we used the same mathematical model and most parameters in the Gardner et al paper

(Gardner et al., 2000). Here we think the synthetic ATRs mainly influenced the TetR production rate, with low rate corresponding

to T_S28 (a1 = 400, b = 2.7), medium rate corresponding to T_S67 (a1 = 600, b = 3.0), and high rate corresponding to T_WT (a1 =

1000, b = 3.245). All the other parameters are set the same as in Gardner et al paper. Bifurcation analyses are performed using

XPP-AUTO software (www.math.pitt.edu).

DATA AND SOFTWARE AVAILABILITY

Experimental data for the comprehensive biophysical model development, MATLAB code for the simulation of the logic gates, and

SAS code for statistical analysis can be found in the Data S1.
Cell Systems 6, 206–215.e1–e6, February 28, 2018 e6

http://www.math.pitt.edu

	Design of Adjacent Transcriptional Regions to Tune Gene Expression and Facilitate Circuit Construction
	Introduction
	Results
	Protein Expression Is Influenced by Adjacent Genes and Position
	Quantitative Characterizations of ATR Effects on Synthetic Operons
	Comprehensive Model of ATR Regulation
	Protein Expression Metric Guided Logic Circuit Design
	Tuning Gene Expression with Synthetic 5′ ATRs
	Using Synthetic ATRs to Tune Toggle Switches

	Discussion
	Supplemental Information
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Strains, Media, and Culture Conditions

	Methods Details
	Plasmid Construction
	Minimum Free Energy Calculation
	RT-qPCR
	Flow Cytometry Measurements
	Hysteresis Experiment
	Sample Preparation and Microscopy
	Growth Curve Assay

	Quantification and Statistical Analysis
	Statistical Analysis and Comprehensive Model Development
	Deterministic Model Construction and Prediction for the Logic Gate
	Bifurcation Analysis for the Synthetic Toggle Switches

	Data and Software Availability



