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ABSTRACT: Robust and precise ratio control of heteroge-
neous phenotypes within an isogenic population is an essential
task, especially in the development and differentiation of a large
number of cells such as bacteria, sensory receptors, and blood
cells. However, the mechanisms of such ratio control are poorly
understood. Here, we employ experimental and mathematical
techniques to understand the combined effects of signal
induction and gene expression stochasticity on phenotypic
multimodality. We identify two strategies to control phenotypic
ratios from an initially homogeneous population, suitable
roughly to high-noise and low-noise intracellular environments,
and we show that both can be used to generate precise
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fractional differentiation. In noisy gene expression contexts, such as those found in bacteria, induction within the circuit’s
bistable region is enough to cause noise-induced bimodality within a feasible time frame. However, in less noisy contexts, such
as tightly controlled eukaryotic systems, spontaneous state transitions are rare and hence bimodality needs to be induced with a
controlled pulse of induction that falls outside the bistable region. Finally, we show that noise levels, system response time, and
ratio tuning accuracy impose trade-offs and limitations on both ratio control strategies, which guide the selection of strategy

alternatives.
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Ratio control of differentiation within isogenic populations
is a ubiquitous but poorly understood phenomenon.
From single-celled microbes to higher organisms, many
processes require mixed populations to carry out complex
functions, such as bacterial persistence,"” bacterial compe-
tence,”" nasal and ocular receptor development,”’ differ-
entiation of blood and vascular cells,® and immune response,9
as well as stem cell maintenance and differentiation.'” Several
general explanations for how this phenotypic diversity arises
have been proposed, such as stochastic fluctuations within
gene regulatory networks,'"'> asymmetrical sequestering of
regulatory proteins during cell division,"> and differential
response to spatial gradients of extracellular soluble factors."*
While each of these methods could theoretically generate a
mixture of differentiated cells within a population, research has
frequently focused on the types of cells yielded, rather than the
quantitative control of their ratios. These processes are often
tightly controlled in terms of ratio accuracy and attainment
speed to avoid overspecialization or to ensure normal
development.'*'® Developing a unified understanding of the
mechanisms and relevant factors to achieve and maintain
precise ratio control will have widespread benefits in areas such
as countering bacterial immunity,'” treating diseases in which
ratio control is disrupted, as is the case in some platelet
disorders'® or mastocytosis,'” or in developing improved
protocols for stem cell differentiation.””*'
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As with many biological systems, the highly interconnected
nature of the underlying genetic regulatory circuitry makes it
difficult to study phenotypic ratio control without encounter-
ing myriad confounding variables. Synthetic biology, by cutting
through to the basics of transcriptional regulation in isolated
and orthogonal circuits, offers an attractive route for exploring
mechanisms underlying ratio tuning.”> Studying fundamental
genetic motifs in isolation has yielded a greater understanding
of key cellular behaviors, such as multistability, oscillation, and
adaptation.”®™>* Multistable networks, specifically, are highly
relevant for cellular differentiation processes and have wide
applicability in a diverse range of contexts, from developmental
biology”” to targeted therapeutics® and cell-environment
interactions.’’ Synthetic toggle switches have been imple-
mented repeatedly in multiple organisms, demonstrating the
feasibility of studying differentiation with minimal, synthetic
23253233 Eurther exploration of bistable circuits can
reveal mechanisms of subpopulation control and manipulation,
limitations of diverse control schema, and best practices for
state transition control on single cell and population levels.”***
For example, recent work has studied how circuit component
selection affects the network’s hysteretic region” and how

circuits.
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inclusion of additional circuit components can be used to
adjust population ratios.*

Here, we present methods for reliably tuning a multimodal
population’s ratios without the need for additional network
components. First, using E. coli, we show that positioning a
population with noisy intracellular expression dynamics within
the bistable region can be enough to achieve fractional
differentiation. Then, using the less noisy expression dynamics
of S. cerevisiae, we demonstrate that temporary deviations from
the bistable region can direct robust ratio differentiation in a
low-noise system. By precisely modulating the stimulus
strength and duration which moved the network toward the
other state, we achieve reliable ratio tuning. From these
findings, we develop a mathematical framework through which
we can fully understand the roles of stimulus dosage, stimulus
duration, and noise in driving fractional state switching of
cellular populations. Gene expression noise acts as a global
regulator of the speed and accuracy of ratio tuning, with noise
level positively correlated with speed but negatively correlated
with accuracy. Low noise systems become candidates for
pulsed induction ratio tuning, in which an inverse correlation
between stimulus dose and duration is observed, translating
into a trade-off between the speed to attaining a chosen ratio
and ratio accuracy.

B RESULTS AND DISCUSSION

To investigate mechanisms of ratio control in bacteria, we first
use the well-established bistable switch circuit.”” The topology
is that of mutual inhibition (Figure 1a) in which TetR and Lacl
repress one another while Lacl is coexpressed with green
fluorescent protein (GFP). TetR activity can be modulated
with the addition of the small molecule anhydrotetracycline
(ATc), which inhibits TetR activity and hence alleviates its
inhibition on the expression of Lacl. When grown in the
absence of induction, the system favors the TetR dominant,
low GFP state. A hysteresis curve was generated as a function
of ATc concentration (Figure S1) to probe the cells’ state
distribution in and out of its bistable region. A fitting with a
deterministic model indicated that the left bifurcation point is
less than 0 ng/mL ATc, while the right bifurcation point is
approximately 2 ng/mL ATc. Next, we developed a stochastic
model (Table S1) for the system which shows strong
agreement with the data (Figure 1b and Figure S2). Within
the bistable region bimodal behavior was observed, with a
portion of cells in the high GFP state while some were in the
low GFP state (Figure 1c). This bimodality is believed to be
caused by noise driven spontaneous state transitions.”**~*!
Further long-term experiments and analyses were conducted to
ensure the results were not affected by confounding factors
(Figure S3).

To quantitatively understand the relationship between noise
and the resulting bimodality of phenotypes, the stochastic
model was used to explore the quasipotential landscape
underlying this bistability. The quasipotential landscape is
estimated by the probability distribution from the stochastic
simulation of 1000 cells. It is shown that as ATc concentration
increases, the depth of the left (low GFP) potential well
decreases (Figure 1d). This essentially lowers the barrier of
state transition from low GFP to high GFP, indicating that
higher ATc induction would result in a larger percentage of
cells in the high GFP state. Experiments indeed confirmed
model predictions (Figure 1c, Figure S4a). It is noted that the
main function of ATc is to stimulate the production of LacI by
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Figure 1. Gene expression noise in E. coli induces fractional
differentiation within the bistable region. (a) Diagram of the mutual
inhibition bistable switch. (b) In E. coli, this bistable switch exhibits
hysteresis from 0 to roughly 1.5 ng/mL ATc. Within this range, cells
can stably hold either the low GFP or high GFP states. The plot
shows the mean of three replicates’ medians + SD, overlaid with
model-predicted mean GFP values of 1000 simulated cells. Colored
dots and squares are experimental results, and solid lines are
simulation results. (c) Flow cytometry histograms of initially GFP-
off populations show that as ATc dose increases, gene expression
noise causes an increasing fraction of cells to spontaneously turn on.
Dashed lines indicate an empirical threshold between OFF and ON
cells. Three replicates are shown on each plot with corresponding
dosage and the total percentage of ON cells noted. Data of 10 000
cells are collected for each experiment. (d) Quasi-potentials
computed for different ATc dosages within the hysteretic region
show the relative stability of the two steady states. At 0.5 ng/mL cells
transition at similar rates between wells (arrows), but as ATc dosage
increases to 1.5 ng/mlL, the potential well for the low state becomes
shallower, allowing cells to more easily transition to the high GFP
state (represented by thicker arrowhead). Potential wells are
generated from a stochastic simulation fit to the hysteresis curve
data. (e) Stochastic model predicted ON percentage (blue line) fit
experimental results (red square) accurately. The ON percentage is
computed as the mean ON percentage of three replicates
experimentally and that of 1000 simulated cells computationally for
each dose of ATc.

suppressing the inhibition of TetR on Lacl and thus change the
depth of the two steady states’ quasipotential wells. Although
ATc does not have a direct effect on the intracellular noise, it
changes the amount of Lacl and TetR, which determine the
intracellular noise directly. This fraction changed little between
measurements at 12 and 15 h, suggesting it is stable.
Furthermore, it is shown that our model can predict such a
ratio control with high quantitative accuracy (Figure le, Figure
S4b,c), showing that high-GFP cell ratios increase monotoni-
cally but nonlinearly as ATc induction increases. Such a
gradual and steady increase of ON cell percentage as a function
of induction dosage could enable a precise ratio control for the
entire bacterial population.
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Figure 2. In S. cerevisiae, gene expression noise is lower, requiring temporary deviation from the bistable region to induce multimodality. (a) The
hysteresis curve of the yeast toggle switch shows strong stability. The plot shows mean of three flow cytometry replicates’ medians + SD, overlaid
with model-predicted hysteresis curve. (b) Yeast cells were exposed to pulses of ATc with varying dose and duration. Before the pulse (Phase I), all
cells resided in the low-GFP state without any induction, corresponding to a single-welled potential landscape. The induction pulse (Phase 2)
changes the underlying landscape to a single well in the high-GFP state, and cells begin to transition from low to high GFP state. Before all cells
transition, induction is reduced to 8 ng/mL (Phase 3), at which there are two deep potential wells, low GFP and high GFP. Partially transitioned
cells either transition fully or return to their initial low-GFP state. (c) Four flow cytometry experiments with four replicates each after pulse
induction are shown with the total percentage of cells to the right of the dashed line. Inducer pulses for controlled durations allow for a wide range
of ratios, with multiple paths to the same end point. Pulses of either 25 ng/mL or 30 ng/mL ATc for 4 or 8 h achieve a range of final ratios, with the

25 X 8 and 30 X 4 pulses producing nearly identical outcomes.

This finding of tunable ratio control by adjusting induction
strength within the bistable region suggests one possible ratio
control strategy for systems that require precise, but
uncoordinated, fractional control of population differentiation.
Bacteria, for example, could keep a subset of the colony in a
dormant persister state to ensure survival in the case of
unexpected environmental shifts or antibiotics."” Stochastic
switching provides a simple mechanism for entering and
exiting this state. A similar behavior is seen in the bacterial
motility and adhesion decisions,"** or in switching to a
mutable, competent state.'> In these cases, the overall ratio
remains relatively fixed; though, individual cell’s states are not.
However, this strategy demands relatively high intracellular
noise, which is common in plasmid-based bacterial systems,44
so that individual cells could spontaneously transition between
states within a reasonable amount of time.

Spontaneous and random back and forth switching between
states is certainly not suitable for processes requiring
irreversible cell fate determination, such as development and
cell differentiation. In these contexts, the intracellular noise
would need to be low enough to avoid spontaneous state
switching. To identify possible ratio control strategies in such a
low-noise environment, we transitioned experimentally to a
less-noisy system: the chromosomally integrated mutual
inhibition toggle in S. cerevisiae.”> This circuit has the same
topology as that shown in Figure la, exhibits hysteretic
behavior (Figure 2a), and favors the TetR-dominant, low-GFP
state under no induction. However, differences in promoters,
copy number, and transcription—translation processes between
E. coli and yeast serve to reduce intracellular noise and shift the
bistable region up to roughly 3—17 ng/mL ATc. Unlike in E.
coli, the bulk of the bistable range was impervious to the effects
of intracellular noise, resulting in a single peak homogeneous
expression profile even when the system is operating within the
bistable region.”> The noise level is set by the system’s size Q
in Gillespie’s stochastic simulation, which is widely used to
control the noise in the gene regulator network.**® Though
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noise does not determine the gene expression profile during
the course of a typical experiment, if the stochastic simulation
is run long enough, it indeed recapitulates the data well, as seen
in Figure SS. Instead, to induce bimodality, we hypothesized
that internal variability could be utilized by temporarily forcing
the cells outside of the bistable region favoring another state.
Then the population would begin to transition to the other
state. However, natural stochasticity would cause some cells to
transition faster than others. When the population was
returned to the bistable region prior to full-population
transition, some fraction of the cells would finish their
transition while the rest would return to their original state.
Figure 2b schematically illustrates this process and how the
various stimulus levels adjust the underlying potential land-
scape to induce bimodality. This diagram also shows the two
variables which determine population response: dose, which
measures the magnitude of the induction pulse, and duration,
the length of time for which the dose is applied. Using this
method, the population achieved a specific phenotypic ratio
and individual cells only transition between states once, which
is distinct from E. coli.

Systematic temporal induction experiments were then
designed and carried out to test our hypothesis. Using doses
of 20, 25, 30, 35, and 40 ng/mL ATc, with pulse durations
between 2 and 24 h, we comprehensively explored the range of
ratios yielded by various dose/duration pairs (Figure S6). As
seen in Figure 2c, there exists an inverse relationship between
dose and duration, with increases in either variable causing a
larger fraction of the population to transition to the high GFP
state. Therefore, similar fractional responses can be obtained
through multiple induction routes. For example, as demon-
strated in the middle two panels of Figure 2¢, 8 h of 25 ng/mL
induction and 4 h of 30 ng/mL both produced about 59% of
ON cells. Therefore, this pulsed induction method is
experimentally verified to be able to produce tightly controlled
yeast population ratios.
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The model fit of the experimental data (Figure 3a) provides
insight into the range of doses and durations appropriate for
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Figure 3. Mathematical modeling reveals the relationship between
dose and duration needed for precise ratio control. (a) Experimental
data (circles) were used to fit the stochastic model (lines) for multiple
dose-duration pairs, showing strong agreement between the model
and experimental results. Experimental data are the mean of four or
five replicates’ medians + SD and the simulation data are the mean of
1000 simulated cells. (b) Further simulations show induction duration
needed for a specific ratio increases exponentially as dose decreases
until near the bifurcation point at roughly 20 ng/mL. Additionally, the
tuning range from when a small portion of the population has
switched states (teal) to when a large fraction has transitioned (red) is
large at low doses but shrinks with increasing doses.

producing specific ratios. For example, with a 20 ng/mL ATc
induction, it took between 18 and 24 h pulses to have greater
than 70% of the cells to transition to the high GFP state,
whereas a 40 ng/mL induction produced the same transition
with a 4 h pulse. Generally, we observe that larger doses
produce fast switching dynamics, and smaller doses required
progressively longer durations to produce similar switch
percentages. As evidenced by the very long durations for the
20 ng/mL dose, induction pulses near the bifurcation point
could require durations of a day or more to cause a majority of
cells to transition to high GFP, while ATc doses below 15 ng/
mL have essentially no effect within the experimental time
frame. With the use of experimentally validated model and
parameters, more simulation data were analyzed to determine
the robustness of the system to temporal perturbation of the
pulse length. For this, we looked at the difference in time
required to cause 30% and 70% of the population to transition,
which we termed tuning range (TR = T,, — Tj,). Figure 3b
shows that while lower doses require longer durations to
achieve a desired ratio (higher vertical positions of colored bars
toward the left), these doses also have a bigger TR (longer
vertical span of colored bars), suggesting that the ratio tuning
in this region is more robust against temporal variation of
induction pulses. For example, a 25 ng/mL dose generates 30%
high GFP with a 4 h pulse and 70% with a 7 h pulse, resulting
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in a TR of 3 h. For 20 ng/mL induction, T3, and T, both
increase to 8 and 13 h, respectively, resulting in an overall
larger TR of 5 h, indicating that there is more room for pulse-
length error if a specific ratio within this range is desired.
Conversely, larger doses, due to their fast switching dynamics,
leave little room for error if a specific ratio is desired, with Tj,
and T, being nearly the same. Results for on—off transitions
show a similar relationship between induction dose and
required duration (Figure S7), and E. coli exhibits similar,
though noisier, switching behavior as well (Figure S8).

To develop a complete understanding of the relationship
between noise and ratio control strategies across the noise
spectrum, we employed an in silico approach that allows us to
adjust the noisiness of gene expression while holding other
system parameters constant. The model has been shown
capable of recapitulating experimental results accurately under
various conditions. It therefore serves as an appropriate tool to
conduct thorough in silico explorations to meaningfully ratio
control outcomes between high and low noise scenarios.

To investigate the effect of noise on system responsiveness
to induction, simulations, like those shown in Figure S9, were
carried out in low and high noise settings. Figure 4a shows that
increasing noise reduces the time required for a population to
transition to a new steady state ratio. The orange line indicates
the steady state percentage of the population which will
transition to the high-GFP state at a given ATc concentration.
All distributions between 0 and 100% are represented within
the circuit’s bistable region, with the ATc concentrations
resulting in 30% and 70% on cells (gray region) defining a
region of broad tunability. The steady state is strictly 0 or
100% to the left or right of the bistable region, respectively.
Because the time required to reach a steady state approaches
infinity in the absence of noise, we measured the time needed
for the population to reach half of the steady state ON
percentage (Thumay)- In the low noise setting (light blue line),
Thaltmax is Very long within the bistable region, with times of 50
h or more for steady state ratios below 80%, suggesting it is
almost experimentally impossible. This is consistent with our
previous studies in yeast.” In the high noise setting (dark blue
line), Thyigmax is Universally reduced. Beyond the bistable region,
noise plays a less prominent role, with the high and low noise
conditions resulting in almost identical transition times. These
results indicate that constant induction within the bistable
region is only a suitable ratio control strategy for systems with
high enough noise to induce frequent and spontaneous state
transitions, which is the case for E. coli.

Because of the long transition times in the low noise setting,
the ratio control strategy for these cells becomes transient
induction outside the bistable region. To compare the impacts
of noise from multiple perspectives, we developed criteria to
measure system responsiveness. Stimulus responsivity (SR =
1/Tj,) is a measure of the speed of transitions in response to a
stimulus. A higher SR value means faster ratio control. Along
with TR, both metrics can be calculated for pulsed inductions
as used in Figure 2.

Both TR and SR were computed for simulations of pulsed
inductions for various inducer concentrations in low noise
(Figure 4b) and high noise (Figure S10) settings. Generally,
noise causes a mild universal increase in SR, but differences in
TR are only notable within the bistable region. As can be seen
in Figure 4b, while the system’s responsiveness (SR, red line)
increases asymptotically as the dose increases, tolerance to
error (TR, purple line) decreases. These data roughly divide
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Figure 4. Gene expression noise determines appropriate method for
achieving predictable ratio control. (a) High noise allows ratio control
with constant induction. The orange line indicates the steady state
population level average expression of the system, with the gray region
bounded by constant induction dosage needed for 30% and 70% high
GFP. Blue lines indicate T} gmay for low noise (light blue) and high
noise (dark blue) environments. High gene expression noise reduces
the time required for the population to transition from off to the
steady state determined by inducer concentration. The hysteresis
curve (black) is included for visual reference. (b) Low noise requires
transient induction. Network transition speed (SR, red, left y-axis) and
robustness (TR, dashed purple, right y-axis) of ratio control for a
range of induction dosages. These curves divide the induction space
into five regions. Regions A, C, and E are unsuitable for generating
controlled ratios because cells do not transition (A), transition too
slowly (C), or lack robust ratio control (E). Precise ratios can be
attained in region B if noise is high enough to increase SR to an
acceptable level. Region D is suitable for ratio control if both SR and
TR are large enough, determined empirically. Here, region D meets
the criteria SR > 0.25 and TR > S h in the low noise setting. Q = 2 for
high noise and = 10 for low noise.

the system’s induction range into five broad categories, labeled
A—E. Regions A, C, and E are not suitable for either method of
ratio control, but regions B and D (shaded gray) may be
appropriate under certain conditions. Region A is unsuitable
for ratio control because there is neither enough noise nor
induction strength to cause a substantial fraction of the
population to turn on. The boundaries of region B are fixed
mathematically by the system’s parameters and indicate the
range of constant induction that could result in a broad range
of precisely tuned ratios. However, as discussed, large enough
intracellular noise is required to attain these ratios within a
reasonably short time frame. Regions C—E cover induction
levels only appropriate for pulsed induction, because constant
induction at these levels will eventually cause most cells to turn
on. The borders separating these three regions are determined
by SR and TR: the C—D border set by SR, and D—E border
set by TR. The location of these borders should vary between
organisms and could be determined by the cell’s physiological
constraints and needs in their natural settings. Here, the
constraints of SR > 0.25 and TR > § h provide a good inducer
range D that balances speed and accuracy for the low noise
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condition. In region C, the system is highly tunable (large TR)
but responds too slowly (small SR). In region E, the response
time is fast (large SR), but tuning accuracy is lost (small TR).
Region D finds a compromise between SR and TR constraints
and is therefore appropriate for pulsed induction ratio control.
The borders of region B are fixed mathematically and are
suitable for constant induction ratio control. Those of region D
are softer and produce tightly controlled ratios via pulsed
induction. These borders are limited more by experimental
constraints, and those shown in Figure 4 demonstrate the
inherent trade-off between speed and accuracy.

In this work, we have used the mutual inhibition toggle
switch—a synthetic version of a common genetic memory
motif—to explore the temporal aspects of cell fate determi-
nation. Extracellular factors can drive a fraction of a population
to switch phenotype and these factors interplay with
intracellular gene regulation networks and noise to determine
population response. In the case of E. coli, with noisy gene
expression dynamics, applying constant induction within the
bistable region was enough to elicit state-switching. With the
less noisy kinetics observed in S. cerevisiae, on the other hand,
cells retained their steady state behavior unless temporarily
forced out of the bistable region with a pulse of induction.
Through both methods, it was demonstrated that control of
population ratios could be achieved with a high degree of
precision.

In the case of transiently introduced pulses of extracellular
factors, we show that there exists an inverse relationship
between the strength of the stimulus and duration for which it
is needed. A target ratio can be achieved reliably either with a
strong pulse for a short duration or vice versa. Under this
framework, the only limitation for achieving precise ratio
control is the temporal resolution imposed by the physical
constraints in removing cells from the forcing stimulus. We
also observed a trade-oft between system response speed and
tuning robustness, quantified in the concepts of SR and TR.
Lower pulse doses tended to be more robust to temporal
variation in pulse length but required long durations to reach a
desired ratio, while the opposite was true for high doses. This
trade-off between speed and accuracy is found throughout
intrinsically stochastic biological contexts.*” Furthermore, gene
expression noise acts as a global regulator of state switching.
Increasing noise reduces transition times for both constant and
pulsed inductions, increasing speed but resulting in a small
reduction in tuning accuracy. Through this mechanism, noise
levels determine whether constant induction will cause
transitions within a reasonable time and determine the final
dose at which pulsed induction should be set. Intracellular
noise, therefore, is integral for the choice of ratio control
strategy as well as for the chosen strategy’s implementation.

In addition to the specific network studied, we also
introduce a framework to analyze complex cellular behaviors
involving a temporal component. Timing of cellular processes
is becoming an increasingly important area of study,***’ and
analogies can be drawn to applied fields of study. Though
significantly more complex, the methods for deriving specific
phenotypes from pluripotent progenitors are similar to the
method we employ here.””*" Pluripotent cells are grown in a
cocktail of growth factors for specific periods of time,
sometimes sequentially, to force differentiation down a desired
path. While this work has been biologically and empirically
driven in the past, we suggest that a mathematical approach
may yield further insight into directed differentiation methods.
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Additionally, we compared ratio tuning strategies between
organisms, showing that response times and noise profiles
differed vastly between E. coli and S. cerevisiae. Because these
model organisms are often used to draw inferences about gene
networks more generally, understanding the nuances of their
behavior and how they differ from other cell types, like
mammalian systems, is important. Adjusting noise profiles in
silico is a useful tool,>*~>" but it is no substitute for studying
the phenomenon in living systems.”*>° By better under-
standing how noise is manifest in natural circuits, we will be
better able to devise strategies to utilize and control noise to
make more reliable gene networks.”’ =’

Through this work we have shown the importance of
considering the temporal evolution and expression noise of a
system when analyzing its differentiation dynamics. We
developed and leveraged a mathematical understanding of
the bistable toggle switch to achieve robust control of
fractional differentiation ratios. Further work along these
lines could have wide-ranging applications in countering
bacterial persistence, developmental or stem cell biology,
therapeutics, and provide guidance for de novo gene network
synthesis.

B METHODS

Plasmids and Cell Strains. E. coli experiments were
performed with K12 MG1655 (American Type Culture
Collection, ATCC, #700926) modified with (ALacl AAraC)
deletions. The toggle switch plasmid, 7pKDL, was provided
generously as a gift from James Collins.”” All yeast experiments
were performed in YPHS00 cells (Stratagene). The genomi-
cally integrated toggle system was developed previously by our
group in collaboration with James Collins.”®

Flow Cytometry and Data Analysis. All cell measure-
ments were taken with a Becton Dickinson (BD) Accuri C6
flow cytometer. Front scatter (FSC-A) and side scatter (SSC-
A) were used to gate cellular populations. Only a very course
gating was used which removed debris smaller than the cell size
but maintained the full range of population size variation.
Samples were run on high flow rate to 10 000 captured events.
The FL-1 channel (488 nm excitation; 530 + 15 nm filter) was
used to measure GFP fluorescence. Data were analyzed using
MATLAB (Mathworks, Inc.) run on a personal computer.

E. coli Experiments. The pKDL toggle switch was
transformed into the E. coli using a transformation kit
(Zymo Research) and selected for by plating on Luria Broth
(LB) agar (Sigma-Aldrich) plates with added kanamycin
(Sigma-Aldrich). Cells were picked the day prior to performing
experiments and cultured in S mL of LB medium (Sigma-
Aldrich) with kanamycin (Sigma-Aldrich). The following day,
cell density was measured with flow cytometry and diluted to
1.5 cells/uL in fresh LB media with kanamycin.

For hysteresis experiments, after 2 h, cells were rediluted
into medium with anhydrotetracycline (ATc; Sigma-Aldrich)
forcing them to the initial off (ATc = 0; the cells favored the
off state after overnight growth) or initial on (ATc = 20 ng/
mL) states. These were maintained with hourly dilutions for 3
h, then rediluted in medium containing variable ATc levels (0,
0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 ng/mL). When diluting from a
high ATc concentration to a lower one, media volumes of
different concentrations were mixed to avoid the potential
shock of centrifugation and washing. For example, to go from
20 ng/mL to 4 ng/mL ATc, 1 part of the original culture was
added to 4 parts at 0 ng/mL, yielding a final concentration of 4
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ng/mL. To dilute from initial on to 0 ng/mL, cells were
centrifuged and washed with fresh LB before redilution. The
cultures were rediluted in fresh medium to 1.5 cell/uL every 3
h to avoid overgrowth and monitor healthy growth. They were
measured every 3 h until they had achieved steady state
expression at 15 h.

For dose/duration experiments (Figure S8), cells were again
forced to their initial state for 3 h, then rediluted with medium
containing the desired dose of ATc. At each time point, a
portion of the culture was run on flow cytometry and another
portion was rediluted to within the toggle’s bistable range
(0.125 ng/mL) using a similar fractional volume method of
increasing or decreasing the concentration. The longest pulse
given was 4 h, and all cultures were maintained with hourly
dilutions. All cultures were tested via flow cytometry 4 h after
the beginning of the pulse and again 1 h later to ensure that the
population had reached steady state expression.

S. cerevisiae Experiments. A single copy of the toggle
switch was inte§rated into the yeast genome as described in a
previous work.” Confirmed clones were streaked onto 2%
glucose YPD agar plates (Sigma-Aldrich). Colonies were
picked from these plates 42 h prior to the start of the
experiment and grown in 5 mL of YPD medium. After 8 h,
cultures were monitored by flow cytometry and rediluted to
1500 cells/mL in fresh YPD and allowed to grow overnight.
After 12 h, cells were measured again and rediluted to 5000
cells/mL into yeast medium with 2% galactose (Sigma-
Aldrich) and 1% raffinose (Sigma-Aldrich) with appropriate
ATec to induce the initial off (0 ng/mL ATc) or initial on (50
ng/mL) states. These were measured and rediluted again 12 h
later and allowed to grow overnight before the experiment was
begun. For hysteresis experiments, initial off and initial on cells
were diluted into varying concentrations of ATc (0, 0.5, 1, 2, 4,
8, 14, 20, 30, 40, SO ng/mL). Cells were diluted to 5000 cells/
mL every 12 h and measured via flow cytometry at 24 and 48
h. For dose/duration experiments, cultures were induced with
ATc and at the end of each duration a portion of the culture
was measured with flow cytometry and a portion was diluted
down to an ATc concentration within the toggle’s bistable
range (8 ng/mL). Cells were measured and rediluted every 12
h after the start of the initial dose, with the final measure being
at least 12 h after the end of the initial dose, to ensure that cells
had reached steady state expression.

Modeling. We used the model proposed in previous
work.”> The ODEs are

1.0

[L] = zqcd + —(cil — crl)
] ATc k 7"
10 + [( L )(1‘0 ATl ]
— delta[L]
(1)
/ 1.0 .
[T] = zqcrt + 7M'(Clt — crt) — delta[T]
1]
Lo+ (%) @)

Where [L] and [T] are the concentration of Lacl and TetR.
Lacl is coexpressed with GFP, and thus it was used
interchangeably. crl and cil are the production rate of Lacl
when the promoter is repressed or induced, respectively, while
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crt and cit are the production rate of TetR when the promoter
is repressed or induced, respectively. k, represents the active
TetR concentration needed to make this probability 50%, and
nt describes the nonlinearity of this inhibition. kj represents the
Lacl concentration needed to make the promoter bound by
LacI 50% of the time, and nl describes the nonlinearity of this
inhibition. m is the Hill coefficient of the Hill function, which is
used to describe the relationship between the active ratio of
repressor TetR and the ATc inducer concentration. Here 7 is
the time scale of the system. The detail of the model
construction can be found in our previous work.>®

For the stochastic simulation, the concentration of each
molecular species is converted to its number; that is, x = [x]€Q,
where € is a system size factor. Table S1 lists all the reactions
involved. The 7-leap-based stochastic Gillespie algorithm is
used for the stochastic simulation.””®" The noise level is set by
Q, which is set to 3 for E. coli system and 10 for S. cerevisiae.
The quasi-potential landscape in Figure 1d and Figure 2b is
defined as U(x) = —log(P,(X)) where P (X) is the probability
distribution from stochastic simulation with 1000 cells for 500
model hours. Figure 1d and Figure 2b show the resultant
quasipotential landscape corresponding to a one-dimensional
projection on the Lacl axis. The bifurcation diagrams are
generated with Oscill8 (http://oscillS.sourceforge.net/).

We searched the parameter space with a customized
Metropolis algorithm (see the following section for details)
to fit various experimental data, including the hysteresis curves
(Figures 1b and 2a) and the fractions of the population to
transition to the high GFP state (Figures le and 3a). It is
noted that not all the parameters for E. coli and yeast are the
same since we found different hysteresis curves in the two
systems. It is an irreversible bistable switch in E. coli (Figure
1b), while it is a reversible bistable switch in S. cerevisiae
(Figure 2a). To preserve the bistability for both systems and
show the difference between them, we kept most of the
parameters the same for the two systems as the synthetic
circuit is topologically the same. We estimated the parameters
based on our previous work™ to make both systems bistable
and then used the Metropolis algorithm to search the
parameters that control the bistable ranges (including k.., k,
and k) and the time scale (7) separately to fit various
experimental data. The estimated and fitted parameters can be
found in Table S2. In Figure 4, we used the parameters for S.
cerevisiae under different noise levels to study the general
strategies to achieve a predictable ratio.

Parameter Searching. The procedure for parameter
searching with a customized Metropolis algorithm was as
follows.

1. Choose a parameter set Para, = [k, k, k, 7] and
calculate its fitting score, Score,.

a. For the E. coli system, for each ATc dose in the
Figure 1b and le, the mean value of 1000
simulated cells will be calculated. Then the
summation of the absolute values of the difference
between the simulation data and experiments, i.e.,
mean absolute error (MAE), is calculated as the
fitting score

. For the yeast system, for each ATc dose in Figure
2a and each ATc dose/duration combination
point in Figure 3a, the mean value of 1000
simulated cells will be calculated. Then the
summation of the absolute values of the difference
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between the simulation data and experiments, i.e.,

mean absolute error (MAE), is calculated as the

Y = Yoyl
n

fitting score. That is, score , where

Y is the simulation results results and Y., is the

experimental data.

. Generate a new parameter set Para; = Parag(1 — AP +
€2AP), where AP specifies the maximum percentage of
change per step and ¢ is a vector of uniformly distributed
random number in the interval (0,1).

3. Calculate the fitting score Score; with the parameter set
Para;.

. Calculate the

p= e~ (Scorer=Score0)/T - Gonerate a random number 7,
from with uniform distribution between 0 and 1. Update
Para, = Para, if y; < p. Otherwise, reject the step k to k +
1.

S. Update the best score Score,., = min(Score;Score,)
and the corresponding best parameter set Paray,

acceptance probability

. Update step number k. If k is larger than a maximum
step number, stop. Otherwise return to step 1.
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